INF201/uke6.py

52 lines
1.4 KiB
Python

import numpy as np
from copy import deepcopy
class Network:
def __init__(self, layers, W_file_list, b_file_list):
self.layers = layers
self.W_file_list = W_file_list
self.b_file_list = b_file_list
self.n_layers = 4
self.n_inputs = 784
self.n_outputs = 10
self.n = [self.n_inputs, 512, 256, self.n_outputs]
self.x = np.random.rand(self.n_inputs)
def run(self):
result = self.x
for n, W_file, b_file in zip(self.layers, self.W_file_list, self.b_file_list):
y = deepcopy(result)
l = n(y, W_file = W_file, b_file = b_file)
result = l.run()
return result
class Layer:
def __init__(self, x, W_file, b_file):
self.x = x
files = read(W_file, b_file)
self.W = files.get('W')
self.b = files.get('b')
def run(self):
return layer(self.W, self.x, self.b)
def read(W_file, b_file):
return {'W': np.loadtxt(W_file), 'b': np.loadtxt(b_file)}
# define activation function
def sigma(y):
if y > 0:
return y
else:
return 0
sigma_vec = np.vectorize(sigma)
# define layer function for given weight matrix, input and bias
def layer(W, x, b):
return sigma_vec(W @ x + b)
def main():
network = Network([Layer, Layer, Layer], ['W_1.txt', 'W_2.txt', 'W_3.txt'], ['b_1.txt', 'b_2.txt', 'b_3.txt'])
print(network.run())
if __name__ == '__main__':
main()