Compare commits

...

3 Commits

Author SHA1 Message Date
fa9f0faf62 Ferdig med oppgave 6: MNIST modell 2023-10-30 14:11:48 +01:00
29bbee4165 Ferdig med deloppgave 2 uke 6. Nettverket funker 🥳 2023-10-26 09:28:10 +02:00
ea9bf70eaa Vet ikke hva jeg gjør 2023-10-26 09:04:31 +02:00
13 changed files with 1430 additions and 83 deletions

View File

@ -0,0 +1 @@
,trygve,trygves-laptop,19.09.2023 21:12,file:///home/trygve/.config/libreoffice/4;

512
MNIST/W_1.txt Normal file

File diff suppressed because one or more lines are too long

256
MNIST/W_2.txt Normal file

File diff suppressed because one or more lines are too long

10
MNIST/W_3.txt Normal file

File diff suppressed because one or more lines are too long

1
MNIST/b_1.txt Normal file

File diff suppressed because one or more lines are too long

1
MNIST/b_2.txt Normal file

File diff suppressed because one or more lines are too long

1
MNIST/b_3.txt Normal file
View File

@ -0,0 +1 @@
-0.3120380938053131 0.057060789316892624 0.5383008718490601 -0.4334142804145813 0.20545503497123718 0.8229865431785583 0.26446419954299927 1.3929160833358765 0.40466466546058655 -0.06923668831586838

108
MNIST/main.py Normal file
View File

@ -0,0 +1,108 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Sep 28 08:23:56 2023
@author: Mohamad Mohannad al Kawadri (mohamad.mohannad.al.kawadri@nmbu.no), Trygve Børte Nomeland (trygve.borte.nomeland@nmbu.no)
"""
from abc import ABC, abstractmethod
import numpy as np
from copy import deepcopy
from torchvision import datasets, transforms
class Network:
def __init__(self, layers, W_file_list, b_file_list):
self.layers = layers
self.W_file_list = W_file_list
self.b_file_list = b_file_list
self.x = input
def run(self, x):
result = x
for n, W_file, b_file in zip(self.layers, self.W_file_list, self.b_file_list):
y = deepcopy(result)
l = n(y, W_file = W_file, b_file = b_file)
result = l.run()
return result
def evaluate(self, x, expected_value):
result = list(self.run(x))
max_value_index = result.index(max(result))
return int(max_value_index) == expected_value
class Layer:
def __init__(self, x, W_file, b_file):
self.x = x
files = read(W_file, b_file)
self.W = files.get('W')
self.b = files.get('b')
@abstractmethod
def run(self):
pass
class SigmaLayer(Layer):
def run(self):
return layer(self.W, self.x, self.b)
class ReluLayer(Layer):
def run(self):
return relu_layer(self.W, self.x, self.b)
def read(W_file, b_file):
return {'W': np.loadtxt(W_file), 'b': np.loadtxt(b_file)}
# define activation function
def sigma(y):
if y > 0:
return y
else:
return 0
sigma_vec = np.vectorize(sigma)
def relu_scalar(x):
if x > 0:
return x
else:
return 0
relu = np.vectorize(relu_scalar)
# define layer function for given weight matrix, input and bias
def layer(W, x, b):
return sigma_vec(W @ x + b)
def relu_layer(W, x, b):
return sigma_vec(W @ x + b)
# Function from example file "read.py"
def get_mnist():
return datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)
# Function from example file "read.py"
def return_image(image_index, mnist_dataset):
image, label = mnist_dataset[image_index]
image_matrix = image[0].detach().numpy() # Grayscale image, so we select the first channel (index 0)
return image_matrix.reshape(image_matrix.size), image_matrix, label
def evalualte_on_mnist(image_index, expected_value):
mnist_dataset = get_mnist()
x, image, label = return_image(image_index, mnist_dataset)
network = Network([ReluLayer, ReluLayer, ReluLayer], ['W_1.txt', 'W_2.txt', 'W_3.txt'], ['b_1.txt', 'b_2.txt', 'b_3.txt'])
return network.evaluate(x, expected_value)
def run_on_mnist(image_index):
mnist_dataset = get_mnist()
x, image, label = return_image(image_index, mnist_dataset)
network = Network([ReluLayer, ReluLayer, ReluLayer], ['W_1.txt', 'W_2.txt', 'W_3.txt'], ['b_1.txt', 'b_2.txt', 'b_3.txt'])
return network.run(x)
def main():
print(f'Check if network works on image 19961 (number 4): {evalualte_on_mnist(19961, 4)}')
print(f'Check if network works on image 10003 (number 9): {evalualte_on_mnist(10003, 9)}')
print(f'Check if network works on image 117 (number 2): {evalualte_on_mnist(117, 2)}')
print(f'Check if network works on image 1145 (number 3): {evalualte_on_mnist(1145, 3)}')
print(f'Values image 19961 (number 4): {run_on_mnist(19961)}')
if __name__ == '__main__':
main()

512
W_1.txt Normal file

File diff suppressed because one or more lines are too long

1
b_1.txt Normal file

File diff suppressed because one or more lines are too long

View File

@ -50,4 +50,3 @@ def print_imp_dir(path="./"):
print(f'{Path.cwd()}/{f}: {get_imp_file(f)}') print(f'{Path.cwd()}/{f}: {get_imp_file(f)}')
print_imp_dir() print_imp_dir()
# %%

103
uke6.py
View File

@ -2,46 +2,35 @@ import numpy as np
from copy import deepcopy from copy import deepcopy
class Network: class Network:
def __init__(self): def __init__(self, layers, W_file_list, b_file_list):
self.layers = [] self.layers = layers
self.W_file_list = W_file_list
class Layer: self.b_file_list = b_file_list
def __init__(self, w_file=None, b_file=None):
# define dimensions
self.n_layers = 4 self.n_layers = 4
self.n_inputs = 784 self.n_inputs = 784
self.n_outputs = 10 self.n_outputs = 10
self.n = [self.n_inputs, 512, 256, self.n_outputs] self.n = [self.n_inputs, 512, 256, self.n_outputs]
self.x = np.random.rand(self.n_inputs) self.x = np.random.rand(self.n_inputs)
# define weights and biases
# generate random wheights if no file is provided. else read the file
if w_file == None:
self.W_list = []
for (self.n_cur, self.n_next) in zip(self.n[:-1], self.n[1:]):
self.W_list.append(np.random.rand(self.n_next, self.n_cur))
else:
with open(w_file) as f:
lines = f.readlines()
self.W_list = [x.split(' ') for x in lines]
self.W_list = [[float(n) for n in x] for x in self.W_list]
f.close()
if b_file == None:
self.b_list = []
for (self.n_cur, self.n_next) in zip(self.n[:-1], self.n[1:]):
self.b_list.append(np.random.rand(self.n_next))
else:
with open(b_file) as f:
lines = f.readlines()
self.b_list = [x.split(' ') for x in lines]
self.b_list = [[float(n) for n in x] for x in self.W_list]
f.close()
print(len(self.W_list[0]), len(self.b_list[0]), len(self.x))
print(len(self.W_list[-1]), len(self.b_list[-1]), len(self.x))
def run(self): def run(self):
print(f(self.W_list, self.b_list, self.x)) result = self.x
for n, W_file, b_file in zip(self.layers, self.W_file_list, self.b_file_list):
y = deepcopy(result)
l = n(y, W_file = W_file, b_file = b_file)
result = l.run()
return result
class Layer:
def __init__(self, x, W_file, b_file):
self.x = x
files = read(W_file, b_file)
self.W = files.get('W')
self.b = files.get('b')
def run(self):
return layer(self.W, self.x, self.b)
def read(W_file, b_file):
return {'W': np.loadtxt(W_file), 'b': np.loadtxt(b_file)}
# define activation function # define activation function
def sigma(y): def sigma(y):
@ -55,53 +44,9 @@ sigma_vec = np.vectorize(sigma)
def layer(W, x, b): def layer(W, x, b):
return sigma_vec(W @ x + b) return sigma_vec(W @ x + b)
# define neural network with all weights W and all biases b in W_list and b_list
def f(W_list, b_list, x):
y = deepcopy(x) # deepcopy so that input is not changed
for W, b in zip(W_list, b_list):
y = layer(W, y, b) # call layer multiple times with all weights and biases
return y
def main(): def main():
l = Layer() network = Network([Layer, Layer, Layer], ['W_1.txt', 'W_2.txt', 'W_3.txt'], ['b_1.txt', 'b_2.txt', 'b_3.txt'])
l.run() print(network.run())
l2 = Layer(w_file = 'W_1.txt', b_file = 'b_1.txt')
l2.run()
def gamle_greier():
# define dimensions
n_layers = 4
n_inputs = 64
n_outputs = 10
n = [n_inputs, 128, 128, n_outputs]
# define weights and biases
W_list = []
b_list = []
for (n_cur, n_next) in zip(n[:-1], n[1:]):
W_list.append(np.random.rand(n_next, n_cur))
b_list.append(np.random.rand(n_next))
# generate random input (this would usually be pixels of an image)
x = np.random.rand(n_inputs)
# call the network
print(f(W_list, b_list, x))
for W in W_list:
print(W.shape)
if __name__ == '__main__': if __name__ == '__main__':
main() main()
gamle_greier()