Compare commits
No commits in common. "d5c072ba3f3e3813e3365e906956bb3f529e5044" and "12530126dcc870c41871237cb51ac6678939a590" have entirely different histories.
d5c072ba3f
...
12530126dc
4
uke3.py
4
uke3.py
@ -3,7 +3,7 @@
|
|||||||
"""
|
"""
|
||||||
Created on Thu Sep 28 08:23:56 2023
|
Created on Thu Sep 28 08:23:56 2023
|
||||||
|
|
||||||
@author: Inna Gumauri, Trygve Børte Nomeland
|
@author: innagumauri
|
||||||
"""
|
"""
|
||||||
|
|
||||||
#%% Task 1
|
#%% Task 1
|
||||||
@ -47,7 +47,7 @@ def print_imp_dir(path="./"):
|
|||||||
p = Path(path)
|
p = Path(path)
|
||||||
files = list(p.glob('*.py'))
|
files = list(p.glob('*.py'))
|
||||||
for f in files:
|
for f in files:
|
||||||
print(f'{Path.cwd()}/{f}: {get_imp_file(f)}')
|
print(f'{Path.cwd()}+{f}: {get_imp_file(f)}')
|
||||||
|
|
||||||
print_imp_dir()
|
print_imp_dir()
|
||||||
# %%
|
# %%
|
||||||
|
25
uke5.py
25
uke5.py
@ -1,25 +0,0 @@
|
|||||||
import numpy as np
|
|
||||||
|
|
||||||
def relu(y):
|
|
||||||
return np.maximum(0, y)
|
|
||||||
|
|
||||||
def layer(W, x, b):
|
|
||||||
return relu(W @ x + b)
|
|
||||||
|
|
||||||
n = [64,128,128,128,10]
|
|
||||||
|
|
||||||
print(f"Dimensions: {n}")
|
|
||||||
|
|
||||||
# First layer
|
|
||||||
x = np.random.rand(n[0])
|
|
||||||
b = np.random.rand(n[1])
|
|
||||||
y = np.random.rand(128,64)
|
|
||||||
|
|
||||||
y = layer(y, x, b)
|
|
||||||
|
|
||||||
for i in range(2, len(n)):
|
|
||||||
W = np.random.rand(n[i], n[i - 1])
|
|
||||||
b = np.random.rand(n[i])
|
|
||||||
y = layer(W, y, b)
|
|
||||||
|
|
||||||
print(y)
|
|
107
uke6.py
107
uke6.py
@ -1,107 +0,0 @@
|
|||||||
import numpy as np
|
|
||||||
from copy import deepcopy
|
|
||||||
|
|
||||||
class Network:
|
|
||||||
def __init__(self):
|
|
||||||
self.layers = []
|
|
||||||
|
|
||||||
class Layer:
|
|
||||||
def __init__(self, w_file=None, b_file=None):
|
|
||||||
# define dimensions
|
|
||||||
self.n_layers = 4
|
|
||||||
self.n_inputs = 784
|
|
||||||
self.n_outputs = 10
|
|
||||||
self.n = [self.n_inputs, 512, 256, self.n_outputs]
|
|
||||||
self.x = np.random.rand(self.n_inputs)
|
|
||||||
|
|
||||||
# define weights and biases
|
|
||||||
# generate random wheights if no file is provided. else read the file
|
|
||||||
if w_file == None:
|
|
||||||
self.W_list = []
|
|
||||||
for (self.n_cur, self.n_next) in zip(self.n[:-1], self.n[1:]):
|
|
||||||
self.W_list.append(np.random.rand(self.n_next, self.n_cur))
|
|
||||||
else:
|
|
||||||
with open(w_file) as f:
|
|
||||||
lines = f.readlines()
|
|
||||||
self.W_list = [x.split(' ') for x in lines]
|
|
||||||
self.W_list = [[float(n) for n in x] for x in self.W_list]
|
|
||||||
|
|
||||||
f.close()
|
|
||||||
if b_file == None:
|
|
||||||
self.b_list = []
|
|
||||||
for (self.n_cur, self.n_next) in zip(self.n[:-1], self.n[1:]):
|
|
||||||
self.b_list.append(np.random.rand(self.n_next))
|
|
||||||
else:
|
|
||||||
with open(b_file) as f:
|
|
||||||
lines = f.readlines()
|
|
||||||
self.b_list = [x.split(' ') for x in lines]
|
|
||||||
self.b_list = [[float(n) for n in x] for x in self.W_list]
|
|
||||||
|
|
||||||
f.close()
|
|
||||||
print(len(self.W_list[0]), len(self.b_list[0]), len(self.x))
|
|
||||||
print(len(self.W_list[-1]), len(self.b_list[-1]), len(self.x))
|
|
||||||
def run(self):
|
|
||||||
print(f(self.W_list, self.b_list, self.x))
|
|
||||||
|
|
||||||
# define activation function
|
|
||||||
def sigma(y):
|
|
||||||
if y > 0:
|
|
||||||
return y
|
|
||||||
else:
|
|
||||||
return 0
|
|
||||||
sigma_vec = np.vectorize(sigma)
|
|
||||||
|
|
||||||
# define layer function for given weight matrix, input and bias
|
|
||||||
def layer(W, x, b):
|
|
||||||
return sigma_vec(W @ x + b)
|
|
||||||
|
|
||||||
# define neural network with all weights W and all biases b in W_list and b_list
|
|
||||||
def f(W_list, b_list, x):
|
|
||||||
y = deepcopy(x) # deepcopy so that input is not changed
|
|
||||||
for W, b in zip(W_list, b_list):
|
|
||||||
y = layer(W, y, b) # call layer multiple times with all weights and biases
|
|
||||||
return y
|
|
||||||
|
|
||||||
def main():
|
|
||||||
l = Layer()
|
|
||||||
l.run()
|
|
||||||
l2 = Layer(w_file = 'W_1.txt', b_file = 'b_1.txt')
|
|
||||||
l2.run()
|
|
||||||
|
|
||||||
def gamle_greier():
|
|
||||||
# define dimensions
|
|
||||||
n_layers = 4
|
|
||||||
n_inputs = 64
|
|
||||||
n_outputs = 10
|
|
||||||
n = [n_inputs, 128, 128, n_outputs]
|
|
||||||
|
|
||||||
# define weights and biases
|
|
||||||
W_list = []
|
|
||||||
b_list = []
|
|
||||||
for (n_cur, n_next) in zip(n[:-1], n[1:]):
|
|
||||||
W_list.append(np.random.rand(n_next, n_cur))
|
|
||||||
b_list.append(np.random.rand(n_next))
|
|
||||||
|
|
||||||
# generate random input (this would usually be pixels of an image)
|
|
||||||
x = np.random.rand(n_inputs)
|
|
||||||
|
|
||||||
# call the network
|
|
||||||
print(f(W_list, b_list, x))
|
|
||||||
|
|
||||||
for W in W_list:
|
|
||||||
print(W.shape)
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
main()
|
|
||||||
gamle_greier()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user