108 lines
3.4 KiB
Python
108 lines
3.4 KiB
Python
|
#!/usr/bin/env python3
|
||
|
# -*- coding: utf-8 -*-
|
||
|
"""
|
||
|
Created on Thu Sep 28 08:23:56 2023
|
||
|
|
||
|
@author: Mohamad Mohannad al Kawadri (mohamad.mohannad.al.kawadri@nmbu.no), Trygve Børte Nomeland (trygve.borte.nomeland@nmbu.no)
|
||
|
"""
|
||
|
from abc import ABC, abstractmethod
|
||
|
import numpy as np
|
||
|
from copy import deepcopy
|
||
|
from torchvision import datasets, transforms
|
||
|
|
||
|
class Network:
|
||
|
def __init__(self, layers, W_file_list, b_file_list):
|
||
|
self.layers = layers
|
||
|
self.W_file_list = W_file_list
|
||
|
self.b_file_list = b_file_list
|
||
|
self.x = input
|
||
|
|
||
|
def run(self, x):
|
||
|
result = x
|
||
|
for n, W_file, b_file in zip(self.layers, self.W_file_list, self.b_file_list):
|
||
|
y = deepcopy(result)
|
||
|
l = n(y, W_file = W_file, b_file = b_file)
|
||
|
result = l.run()
|
||
|
return result
|
||
|
|
||
|
def evaluate(self, x, expected_value):
|
||
|
result = list(self.run(x))
|
||
|
max_value_index = result.index(max(result))
|
||
|
return int(max_value_index) == expected_value
|
||
|
|
||
|
class Layer:
|
||
|
def __init__(self, x, W_file, b_file):
|
||
|
self.x = x
|
||
|
files = read(W_file, b_file)
|
||
|
self.W = files.get('W')
|
||
|
self.b = files.get('b')
|
||
|
|
||
|
@abstractmethod
|
||
|
def run(self):
|
||
|
pass
|
||
|
|
||
|
class SigmaLayer(Layer):
|
||
|
def run(self):
|
||
|
return layer(self.W, self.x, self.b)
|
||
|
|
||
|
class ReluLayer(Layer):
|
||
|
def run(self):
|
||
|
return relu_layer(self.W, self.x, self.b)
|
||
|
|
||
|
def read(W_file, b_file):
|
||
|
return {'W': np.loadtxt(W_file), 'b': np.loadtxt(b_file)}
|
||
|
|
||
|
# define activation function
|
||
|
def sigma(y):
|
||
|
if y > 0:
|
||
|
return y
|
||
|
else:
|
||
|
return 0
|
||
|
sigma_vec = np.vectorize(sigma)
|
||
|
|
||
|
def relu_scalar(x):
|
||
|
if x > 0:
|
||
|
return x
|
||
|
else:
|
||
|
return 0
|
||
|
relu = np.vectorize(relu_scalar)
|
||
|
|
||
|
|
||
|
# define layer function for given weight matrix, input and bias
|
||
|
def layer(W, x, b):
|
||
|
return sigma_vec(W @ x + b)
|
||
|
|
||
|
def relu_layer(W, x, b):
|
||
|
return sigma_vec(W @ x + b)
|
||
|
|
||
|
# Function from example file "read.py"
|
||
|
def get_mnist():
|
||
|
return datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)
|
||
|
|
||
|
# Function from example file "read.py"
|
||
|
def return_image(image_index, mnist_dataset):
|
||
|
image, label = mnist_dataset[image_index]
|
||
|
image_matrix = image[0].detach().numpy() # Grayscale image, so we select the first channel (index 0)
|
||
|
return image_matrix.reshape(image_matrix.size), image_matrix, label
|
||
|
|
||
|
def evalualte_on_mnist(image_index, expected_value):
|
||
|
mnist_dataset = get_mnist()
|
||
|
x, image, label = return_image(image_index, mnist_dataset)
|
||
|
network = Network([ReluLayer, ReluLayer, ReluLayer], ['W_1.txt', 'W_2.txt', 'W_3.txt'], ['b_1.txt', 'b_2.txt', 'b_3.txt'])
|
||
|
return network.evaluate(x, expected_value)
|
||
|
|
||
|
def run_on_mnist(image_index):
|
||
|
mnist_dataset = get_mnist()
|
||
|
x, image, label = return_image(image_index, mnist_dataset)
|
||
|
network = Network([ReluLayer, ReluLayer, ReluLayer], ['W_1.txt', 'W_2.txt', 'W_3.txt'], ['b_1.txt', 'b_2.txt', 'b_3.txt'])
|
||
|
return network.run(x)
|
||
|
|
||
|
def main():
|
||
|
print(f'Check if network works on image 19961 (number 4): {evalualte_on_mnist(19961, 4)}')
|
||
|
print(f'Check if network works on image 10003 (number 9): {evalualte_on_mnist(10003, 9)}')
|
||
|
print(f'Check if network works on image 117 (number 2): {evalualte_on_mnist(117, 2)}')
|
||
|
print(f'Check if network works on image 1145 (number 3): {evalualte_on_mnist(1145, 3)}')
|
||
|
print(f'Values image 19961 (number 4): {run_on_mnist(19961)}')
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
main()
|