mirror of
https://github.com/markqvist/Reticulum.git
synced 2024-11-05 05:40:14 +00:00
222 lines
8.7 KiB
Python
222 lines
8.7 KiB
Python
import argparse
|
|
import time
|
|
import FPE
|
|
|
|
# Let's define an app name. We'll use this for all
|
|
# destinations we create. Since this echo example
|
|
# is part of a range of example utilities, we'll put
|
|
# them all within the app namespace "example_utilities"
|
|
APP_NAME = "example_utilitites"
|
|
|
|
# This initialisation is executed when the users chooses
|
|
# to run as a server
|
|
def server(configpath):
|
|
# We must first initialise FlexPE
|
|
fpe = FPE.FlexPE(configpath)
|
|
|
|
# Randomly create a new identity for our echo server
|
|
server_identity = FPE.Identity()
|
|
|
|
# We create a destination that clients can query. We want
|
|
# to be able to verify echo replies to our clients, so we
|
|
# create a "single" destination that can receive encrypted
|
|
# messages. This way the client can send a request and be
|
|
# certain that no-one else than this destination was able
|
|
# to read it.
|
|
echo_destination = FPE.Destination(server_identity, FPE.Destination.IN, FPE.Destination.SINGLE, APP_NAME, "echo", "request")
|
|
|
|
# Tell the destination which function in our program to
|
|
# run when a packet is received.
|
|
echo_destination.setCallback(serverCallback)
|
|
|
|
# Everything's ready!
|
|
# Let's Wait for client requests or user input
|
|
announceLoop(echo_destination)
|
|
|
|
|
|
def announceLoop(destination):
|
|
# Let the user know that everything is ready
|
|
FPE.log("Echo server running, hit enter to send announce (Ctrl-C to quit)")
|
|
|
|
# We enter a loop that runs until the users exits.
|
|
# If the user just hits enter, we will announce our server
|
|
# destination on the network, which will let clients know
|
|
# how to create messages directed towards it.
|
|
while True:
|
|
entered = raw_input()
|
|
destination.announce()
|
|
FPE.log("Sent announce from "+FPE.prettyhexrep(destination.hash))
|
|
|
|
|
|
def serverCallback(message, packet):
|
|
# We have received am echo request from a client! When
|
|
# a client sends a request, it will include the hash of
|
|
# it's identity in the message. Since we know that the
|
|
# client has created a listening destination using this
|
|
# identity hash, we can construct an outgoing destination
|
|
# to direct our response to. The hash is sent in binary
|
|
# format, so we encode it as printable hexadecimal first,
|
|
# since aspect names need to in printable text.
|
|
client_identity_hexhash = message.encode("hex_codec")
|
|
|
|
# We can now create a destination that will let us reach
|
|
# the client which send the echo request.
|
|
reply_destination = FPE.Destination(None, FPE.Destination.OUT, FPE.Destination.PLAIN, APP_NAME, "echo", "reply", client_identity_hexhash)
|
|
|
|
# Let's encode the reply destination hash in a readable
|
|
# way, so we can output some info to the user.
|
|
reply_destination_hexhash = reply_destination.hash.encode("hex_codec")
|
|
|
|
# Tell the user that we received an echo request, and
|
|
# that we are going to send a reply to the requester.
|
|
FPE.log("Received packet from <"+reply_destination_hexhash+">, sending reply")
|
|
|
|
# To let the client know that we got the echo request,
|
|
# we will use the "proof" functions of FlexPE. In most
|
|
# applications, the proving of packets will occur fully
|
|
# automatically, but in some cases like this, it can be
|
|
# beneficial to use the functions manually, since it
|
|
# neatly provides functionality that can unequivocally
|
|
# prove the receipt of the request to the client.
|
|
#
|
|
# Using the proof functionality is very simple, we just
|
|
# need to call the "prove" method on the packet we wish
|
|
# to prove, and specify which destination it should be
|
|
# directed to.
|
|
packet.prove(reply_destination)
|
|
|
|
|
|
# We need a global list to hold sent echo requests
|
|
sent_requests = []
|
|
# This initialisation is executed when the users chooses
|
|
# to run as a client
|
|
def client(destination_hexhash, configpath):
|
|
# We need a binary representation of the destination
|
|
# hash that was entered on the command line
|
|
try:
|
|
if len(destination_hexhash) != 20:
|
|
raise ValueError("Destination length is invalid, must be 20 hexadecimal characters (10 bytes)")
|
|
destination_hash = destination_hexhash.decode("hex")
|
|
except:
|
|
FPE.log("Invalid destination entered. Check your input!")
|
|
exit()
|
|
|
|
# We must first initialise FlexPE
|
|
fpe = FPE.FlexPE()
|
|
|
|
# Randomly create a new identity for our echo server
|
|
client_identity = FPE.Identity()
|
|
|
|
# Let's set up a destination for replies to our echo
|
|
# requests. This destination will be used by the server
|
|
# to direct replies to. We're going to use a "plain"
|
|
# destination, so the server can send replies back
|
|
# without knowing any public keys of the client. In this
|
|
# case, such a design is benificial, since any client
|
|
# can send echo requests directly to the server, without
|
|
# first having to announce it's destination, or include
|
|
# public keys in the echo request
|
|
#
|
|
# We will use the destination naming convention of:
|
|
# example_utilities.echo.reply.<IDENTITY_HASH>
|
|
# where the last part is a hex representation of the hash
|
|
# of our "client_identity". We need to include this to
|
|
# create a unique destination for the server to respond to.
|
|
# If we had used a "single" destination, something equivalent
|
|
# to this process would have happened automatically.
|
|
reply_destination = FPE.Destination(client_identity, FPE.Destination.IN, FPE.Destination.PLAIN, APP_NAME, "echo", "reply", client_identity.hexhash)
|
|
|
|
# Since we are only expecting packets of the "proof"
|
|
# type to reach our reply destination, we just set the
|
|
# proof callback (and in this case not the normal
|
|
# message callback)
|
|
reply_destination.setProofCallback(clientProofCallback)
|
|
|
|
# Tell the user that the client is ready!
|
|
FPE.log("Echo client "+FPE.prettyhexrep(reply_destination.hash)+" ready, hit enter to send echo request (Ctrl-C to quit)")
|
|
|
|
# We enter a loop that runs until the user exits.
|
|
# If the user hits enter, we will try to send an
|
|
# echo request to the destination specified on the
|
|
# command line.
|
|
while True:
|
|
raw_input()
|
|
# To address the server, we need to know it's public
|
|
# key, so we check if FlexPE knows this destination.
|
|
# This is done by calling the "recall" method of the
|
|
# Identity module. If the destination is known, it will
|
|
# return an Identity instance that can be used in
|
|
# outgoing destinations.
|
|
server_identity = FPE.Identity.recall(destination_hash)
|
|
if server_identity != None:
|
|
# We got the correct identity instance from the
|
|
# recall method, so let's create an outgoing
|
|
# destination. We use the naming convention:
|
|
# example_utilities.echo.request
|
|
# Since this is a "single" destination, the identity
|
|
# hash will be automatically added to the end of
|
|
# the name.
|
|
request_destination = FPE.Destination(server_identity, FPE.Destination.OUT, FPE.Destination.SINGLE, APP_NAME, "echo", "request")
|
|
|
|
# The destination is ready, so let's create a packet.
|
|
# We set the destination to the request_destination
|
|
# that was just created, and the only data we add
|
|
# is the identity hash of our client identity.
|
|
# Including that information will let the server
|
|
# create a destination to send replies to.
|
|
echo_request = FPE.Packet(request_destination, client_identity.hash)
|
|
|
|
# Send the packet!
|
|
echo_request.send()
|
|
|
|
# Add the request to our list of sent packets
|
|
sent_requests.append(echo_request)
|
|
|
|
# Tell the user that the echo request was sent
|
|
FPE.log("Sent echo request to "+FPE.prettyhexrep(request_destination.hash))
|
|
else:
|
|
# If we do not know this destination, tell the
|
|
# user to wait for an announce to arrive.
|
|
FPE.log("Destination is not yet known. Wait for an announce to arrive.")
|
|
|
|
def clientProofCallback(proof_packet):
|
|
now = time.time()
|
|
for unproven_packet in sent_requests:
|
|
if unproven_packet.packet_hash == proof_packet.data[:32]:
|
|
if unproven_packet.validateProofPacket(proof_packet):
|
|
rtt = now - unproven_packet.sent_at
|
|
if (rtt >= 1):
|
|
rtt = round(rtt, 3)
|
|
rttstring = str(rtt)+" seconds"
|
|
else:
|
|
rtt = round(rtt*1000, 3)
|
|
rttstring = str(rtt)+" milliseconds"
|
|
FPE.log(
|
|
"Valid echo reply, proved by "+FPE.prettyhexrep(unproven_packet.destination.hash)+
|
|
", round-trip time was "+rttstring
|
|
)
|
|
else:
|
|
FPE.log("Proof invalid")
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
try:
|
|
parser = argparse.ArgumentParser(description="Simple echo server and client utility")
|
|
parser.add_argument("-s", "--server", action="store_true", help="wait for incoming packets from clients")
|
|
parser.add_argument("--config", action="store", default=None, help="path to alternative FlexPE config directory", type=str)
|
|
parser.add_argument("destination", nargs="?", default=None, help="hexadecimal hash of the server destination", type=str)
|
|
args = parser.parse_args()
|
|
|
|
if args.server:
|
|
configarg=None
|
|
if args.config:
|
|
configarg = args.config
|
|
server(configarg)
|
|
else:
|
|
configarg=None
|
|
if args.config:
|
|
configarg = args.config
|
|
client(args.destination, configarg)
|
|
except KeyboardInterrupt:
|
|
exit() |