1
0
mirror of https://github.com/markqvist/Reticulum.git synced 2025-01-12 13:40:33 +00:00
Reticulum/docs/manual/understanding.html
2022-04-07 20:21:15 +02:00

876 lines
51 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Understanding Reticulum &#8212; Reticulum Network Stack 0.3.4 beta documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="_static/classic.css" />
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/doctools.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="API Reference" href="reference.html" />
<link rel="prev" title="Supported Interfaces" href="interfaces.html" />
</head><body>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="reference.html" title="API Reference"
accesskey="N">next</a> |</li>
<li class="right" >
<a href="interfaces.html" title="Supported Interfaces"
accesskey="P">previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">Reticulum Network Stack 0.3.4 beta documentation</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">Understanding Reticulum</a></li>
</ul>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<div class="section" id="understanding-reticulum">
<span id="understanding-main"></span><h1>Understanding Reticulum<a class="headerlink" href="#understanding-reticulum" title="Permalink to this headline"></a></h1>
<p>This chapter will briefly describe the overall purpose and operating principles of Reticulum, a
networking stack designed for reliable and secure communication over high-latency, low-bandwidth
links. It should give you an overview of how the stack works, and an understanding of how to
develop networked applications using Reticulum.</p>
<p>This document is not an exhaustive source of information on Reticulum, at least not yet. Currently,
the best place to go for such information is the Python reference implementation of Reticulum, along
with the code examples and API reference. It is however an essential resource to understanding the
general principles of Reticulum, how to apply them when creating your own networks or software.</p>
<p>After reading this document, you should be well-equipped to understand how a Reticulum network
operates, what it can achieve, and how you can use it yourself. If you want to help out with the
development, this is also the place to start, since it will provide a pretty clear overview of the
sentiments and the philosophy behind Reticulum.</p>
<div class="section" id="motivation">
<span id="understanding-motivation"></span><h2>Motivation<a class="headerlink" href="#motivation" title="Permalink to this headline"></a></h2>
<p>The primary motivation for designing and implementing Reticulum has been the current lack of
reliable, functional and secure minimal-infrastructure modes of digital communication. It is my
belief that it is highly desirable to create a cheap and reliable way to set up a wide-range digital
communication network that can securely allow exchange of information between people and
machines, with no central point of authority, control, censorship or barrier to entry.</p>
<p>Almost all of the various networking systems in use today share a common limitation, namely that they
require large amounts of coordination and trust to work, and to join the networks you need approval
of gatekeepers in control. This need for coordination and trust inevitably leads to an environment of
central control, where its very easy for infrastructure operators or governments to control or alter
traffic, and censor or persecute unwanted actors.</p>
<p>Reticulum aims to require as little coordination and trust as possible. In fact, the only
“coordination” required is to know the characteristics of physical medium carrying Reticulum traffic.</p>
<p>Since Reticulum is completely medium agnostic, this could be whatever is best suited to the situation.
In some cases, this might be 1200 baud packet radio links over VHF frequencies, in other cases it might
be a microwave network using off-the-shelf radios. At the time of release of this document, the
recommended setup for development and testing is using LoRa radio modules with an open source firmware
(see the section <a class="reference internal" href="#understanding-referencesystem"><span class="std std-ref">Reference Setup</span></a>), connected to a small
computer like a Raspberry Pi. As an example, the default reference setup provides a channel capacity
of 3.1 Kbps, and a usable direct node-to-node range of around 15 kilometers (extendable by using multiple hops).</p>
</div>
<div class="section" id="goals">
<span id="understanding-goals"></span><h2>Goals<a class="headerlink" href="#goals" title="Permalink to this headline"></a></h2>
<p>To be as widely usable and easy to use as possible, the following goals have been used to
guide the design of Reticulum:</p>
<ul class="simple">
<li><dl class="simple">
<dt><strong>Fully useable as open source software stack</strong></dt><dd><p>Reticulum must be implemented with, and be able to run using only open source software. This is
critical to ensuring the availability, security and transparency of the system.</p>
</dd>
</dl>
</li>
<li><dl class="simple">
<dt><strong>Hardware layer agnosticism</strong></dt><dd><p>Reticulum shall be fully hardware agnostic, and shall be useable over a wide range
physical networking layers, such as data radios, serial lines, modems, handheld transceivers,
wired ethernet, wifi, or anything else that can carry a digital data stream. Hardware made for
dedicated Reticulum use shall be as cheap as possible and use off-the-shelf components, so
it can be easily replicated.</p>
</dd>
</dl>
</li>
<li><dl class="simple">
<dt><strong>Very low bandwidth requirements</strong></dt><dd><p>Reticulum should be able to function reliably over links with a transmission capacity as low
as <em>500 bps</em>.</p>
</dd>
</dl>
</li>
<li><dl class="simple">
<dt><strong>Encryption by default</strong></dt><dd><p>Reticulum must use strong encryption by default for all communication.</p>
</dd>
</dl>
</li>
<li><dl class="simple">
<dt><strong>Initiator Anonymity</strong></dt><dd><p>It must be possible to communicate over a Reticulum network without revealing any identifying
information about oneself.</p>
</dd>
</dl>
</li>
<li><dl class="simple">
<dt><strong>Unlicensed use</strong></dt><dd><p>Reticulum shall be functional over physical communication mediums that do not require any
form of license to use. Reticulum must be designed in a way, so it is usable over ISM radio
frequency bands, and can provide functional long distance links in such conditions, for example
by connecting a modem to a PMR or CB radio, or by using LoRa or WiFi modules.</p>
</dd>
</dl>
</li>
<li><dl class="simple">
<dt><strong>Supplied software</strong></dt><dd><p>Apart from the core networking stack and API, that allows a developer to build
applications with Reticulum, a basic communication suite using Reticulum must be
implemented and released at the same time as Reticulum itself. This shall serve both as a
functional communication suite, and as an example and learning resource to others wishing
to build applications with Reticulum.</p>
</dd>
</dl>
</li>
<li><dl class="simple">
<dt><strong>Ease of use</strong></dt><dd><p>The reference implementation of Reticulum is written in Python, to make it easy to use
and understand. A programmer with only basic experience should be able to use
Reticulum in their own applications.</p>
</dd>
</dl>
</li>
<li><dl class="simple">
<dt><strong>Low cost</strong></dt><dd><p>It shall be as cheap as possible to deploy a communication system based on Reticulum. This
should be achieved by using cheap off-the-shelf hardware that potential users might already
own. The cost of setting up a functioning node should be less than $100 even if all parts
needs to be purchased.</p>
</dd>
</dl>
</li>
</ul>
</div>
<div class="section" id="introduction-basic-functionality">
<span id="understanding-basicfunctionality"></span><h2>Introduction &amp; Basic Functionality<a class="headerlink" href="#introduction-basic-functionality" title="Permalink to this headline"></a></h2>
<p>Reticulum is a networking stack suited for high-latency, low-bandwidth links. Reticulum is at its
core a <em>message oriented</em> system. It is suited for both local point-to-point or point-to-multipoint
scenarios where alle nodes are within range of each other, as well as scenarios where packets need
to be transported over multiple hops in a complex network to reach the recipient.</p>
<p>Reticulum does away with the idea of addresses and ports known from IP, TCP and UDP. Instead
Reticulum uses the singular concept of <em>destinations</em>. Any application using Reticulum as its
networking stack will need to create one or more destinations to receive data, and know the
destinations it needs to send data to.</p>
<p>All destinations in Reticulum are represented internally as 10 bytes, derived from truncating a full
SHA-256 hash of identifying characteristics of the destination. To users, the destination addresses
will be displayed as 10 bytes in hexadecimal representation, as in the following example: <code class="docutils literal notranslate"><span class="pre">&lt;80e29bf7cccaf31431b3&gt;</span></code>.</p>
<p>By default Reticulum encrypts all data using elliptic curve cryptography. Any packet sent to a
destination is encrypted with a derived ephemeral key. Reticulum can also set up an encrypted
channel to a destination with <em>Forward Secrecy</em> and <em>Initiator Anonymity</em> using a elliptic
curve cryptography and ephemeral keys derived from a Diffie Hellman exchange on Curve25519. In
Reticulum terminology, this is called a <em>Link</em>.</p>
<p>Reticulum also offers symmetric key encryption for group-oriented communications, as well as
unencrypted packets for broadcast purposes, or situations where you need the communication to be in
plain text. The multi-hop transport, coordination, verification and reliability layers are fully
autonomous and based on public key cryptography.</p>
<p>Reticulum can connect to a variety of interfaces such as radio modems, data radios and serial ports,
and offers the possibility to easily tunnel Reticulum traffic over IP links such as the Internet or
private IP networks.</p>
<div class="section" id="destinations">
<span id="understanding-destinations"></span><h3>Destinations<a class="headerlink" href="#destinations" title="Permalink to this headline"></a></h3>
<p>To receive and send data with the Reticulum stack, an application needs to create one or more
destinations. Reticulum uses three different basic destination types, and one special:</p>
<ul class="simple">
<li><dl class="simple">
<dt><strong>Single</strong></dt><dd><p>The <em>single</em> destination type is always identified by a unique public key. Any data sent to this
destination will be encrypted using ephemeral keys derived from an ECDH key exchange, and will
only be readable by the creator of the destination, who holds the corresponding private key.</p>
</dd>
</dl>
</li>
<li><dl class="simple">
<dt><strong>Group</strong></dt><dd><p>The <em>group</em> destination type defines a symmetrically encrypted destination. Data sent to this
destination will be encrypted with a symmetric key, and will be readable by anyone in
possession of the key.</p>
</dd>
</dl>
</li>
<li><dl class="simple">
<dt><strong>Plain</strong></dt><dd><p>A <em>plain</em> destination type is unencrypted, and suited for traffic that should be broadcast to a
number of users, or should be readable by anyone. Traffic to a <em>plain</em> destination is not encrypted.
Generally, <em>plain</em> destinations can be used for broadcast information intended to be public.</p>
</dd>
</dl>
</li>
<li><dl class="simple">
<dt><strong>Link</strong></dt><dd><p>A <em>link</em> is a special destination type, that serves as an abstract channel to a <em>single</em>
destination, directly connected or over multiple hops. The <em>link</em> also offers reliability and
more efficient encryption, forward secrecy, initiator anonymity, and as such can be useful even
when a node is directly reachable.</p>
</dd>
</dl>
</li>
</ul>
<div class="section" id="destination-naming">
<span id="understanding-destinationnaming"></span><h4>Destination Naming<a class="headerlink" href="#destination-naming" title="Permalink to this headline"></a></h4>
<p>Destinations are created and named in an easy to understand dotted notation of <em>aspects</em>, and
represented on the network as a hash of this value. The hash is a SHA-256 truncated to 80 bits. The
top level aspect should always be a unique identifier for the application using the destination.
The next levels of aspects can be defined in any way by the creator of the application.</p>
<p>Aspects can be as long and as plentiful as required, and a resulting long destination name will not
impact efficiency, as names are always represented as truncated SHA-256 hashes on the network.</p>
<p>As an example, a destination for a environmental monitoring application could be made up of the
application name, a device type and measurement type, like this:</p>
<div class="highlight-text notranslate"><div class="highlight"><pre><span></span>app name : environmentlogger
aspects : remotesensor, temperature
full name : environmentlogger.remotesensor.temperature
hash : fa7ddfab5213f916dea
</pre></div>
</div>
<p>For the <em>single</em> destination, Reticulum will automatically append the associated public key as a
destination aspect before hashing. This is done to ensure only the correct destination is reached,
since anyone can listen to any destination name. Appending the public key ensures that a given
packet is only directed at the destination that holds the corresponding private key to decrypt the
packet.</p>
<p><strong>Take note!</strong> There is a very important concept to understand here:</p>
<ul class="simple">
<li><p>Anyone can use the destination name <code class="docutils literal notranslate"><span class="pre">environmentlogger.remotesensor.temperature</span></code></p></li>
<li><p>Each destination that does so will still have a unique destination hash, and thus be uniquely
addressable, because their public keys will differ.</p></li>
</ul>
<p>In actual use of <em>single</em> destination naming, it is advisable not to use any uniquely identifying
features in aspect naming. Aspect names should be general terms describing what kind of destination
is represented. The uniquely identifying aspect is always acheived by the appending the public key,
which expands the destination into a uniquely identifyable one.</p>
<p>Any destination on a Reticulum network can be addressed and reached simply by knowning its
destination hash (and public key, but if the public key is not known, it can be requested from the
network simply by knowing the destination hash). The use of app names and aspects makes it easy to
structure Reticulum programs and makes it possible to filter what information and data your program
receives.</p>
<p>To recap, the different destination types should be used in the following situations:</p>
<ul class="simple">
<li><dl class="simple">
<dt><strong>Single</strong></dt><dd><p>When private communication between two endpoints is needed. Supports multiple hops.</p>
</dd>
</dl>
</li>
<li><dl class="simple">
<dt><strong>Group</strong></dt><dd><p>When private communication between two or more endpoints is needed. Supports multiple hops
indirectly, but must first be established through a <em>single</em> destination.</p>
</dd>
</dl>
</li>
<li><dl class="simple">
<dt><strong>Plain</strong></dt><dd><p>When plain-text communication is desirable, for example when broadcasting information.</p>
</dd>
</dl>
</li>
</ul>
<p>To communicate with a <em>single</em> destination, you need to know its public key. Any method for
obtaining the public key is valid, but Reticulum includes a simple mechanism for making other
nodes aware of your destinations public key, called the <em>announce</em>. It is also possible to request
an unknown public key from the network, as all participating nodes serve as a distributed ledger
of public keys.</p>
<p>Note that public key information can be shared and verified in many other ways than using the
built-in <em>announce</em> functionality, and that it is therefore not required to use the announce/request
functionality to obtain public keys. It is by far the easiest though, and should definitely be used
if there is not a good reason for doing it differently.</p>
</div>
</div>
<div class="section" id="public-key-announcements">
<span id="understanding-keyannouncements"></span><h3>Public Key Announcements<a class="headerlink" href="#public-key-announcements" title="Permalink to this headline"></a></h3>
<p>An <em>announce</em> will send a special packet over any configured interfaces, containing all needed
information about the destination hash and public key, and can also contain some additional,
application specific data. The entire packet is signed by the sender to ensure authenticity. It is not
required to use the announce functionality, but in many cases it will be the simplest way to share
public keys on the network. As an example, an announce in a simple messenger application might
contain the following information:</p>
<ul class="simple">
<li><p>The announcers destination hash</p></li>
<li><p>The announcers public key</p></li>
<li><p>Application specific data, in this case the users nickname and availability status</p></li>
<li><p>A random blob, making each new announce unique</p></li>
<li><p>An Ed25519 signature of the above information, verifying authenticity</p></li>
</ul>
<p>With this information, any Reticulum node that receives it will be able to reconstruct an outgoing
destination to securely communicate with that destination. You might have noticed that there is one
piece of information lacking to reconstruct full knowledge of the announced destination, and that is
the aspect names of the destination. These are intentionally left out to save bandwidth, since they
will be implicit in almost all cases. If a destination name is not entirely implicit, information can be
included in the application specific data part that will allow the receiver to infer the naming.</p>
<p>It is important to note that announces will be forwarded throughout the network according to a
certain pattern. This will be detailed in the section
<a class="reference internal" href="#understanding-announce"><span class="std std-ref">The Announce Mechanism in Detail</span></a>.</p>
<p>Seeing how <em>single</em> destinations are always tied to a private/public key pair leads us to the next topic.</p>
</div>
<div class="section" id="understanding-identities">
<span id="identities"></span><h3>Identities<a class="headerlink" href="#understanding-identities" title="Permalink to this headline"></a></h3>
<p>In Reticulum, an <em>identity</em> does not necessarily represent a personal identity, but is an abstraction that
can represent any kind of <em>verified entity</em>. This could very well be a person, but it could also be the
control interface of a machine, a program, robot, computer, sensor or something else entirely. In
general, any kind of agent that can act, or be acted upon, or store or manipulate information, can be
represented as an identity.</p>
<p>As we have seen, a <em>single</em> destination will always have an <em>identity</em> tied to it, but not <em>plain</em> or <em>group</em>
destinations. Destinations and identities share a multilateral connection. You can create a
destination, and if it is not connected to an identity upon creation, it will just create a new one to use
automatically. This may be desirable in some situations, but often you will probably want to create
the identity first, and then link it to created destinations.</p>
<p>Building upon the simple messenger example, we could use an identity to represent the user of the
application. Destinations created will then be linked to this identity to allow communication to
reach the user. In all cases it is of great importance to store the private keys associated with any
Reticulum Identity securely and privately.</p>
</div>
<div class="section" id="getting-further">
<span id="understanding-gettingfurther"></span><h3>Getting Further<a class="headerlink" href="#getting-further" title="Permalink to this headline"></a></h3>
<p>The above functions and principles form the core of Reticulum, and would suffice to create
functional networked applications in local clusters, for example over radio links where all interested
nodes can directly hear each other. But to be truly useful, we need a way to direct traffic over multiple
hops in the network.</p>
<p>In the following sections, two concepts that allow this will be introduced, <em>paths</em> and <em>links</em>.</p>
</div>
</div>
<div class="section" id="reticulum-transport">
<span id="understanding-transport"></span><h2>Reticulum Transport<a class="headerlink" href="#reticulum-transport" title="Permalink to this headline"></a></h2>
<p>The term routing has been purposefully avoided until now. The current methods of routing used in IP-based
networks are fundamentally incompatible with the physical link types that Reticulum was designed to handle.
These routing methodologies assume trust at the physical layer, and often needs a lot more bandwidth than
Reticulum can assume is available.</p>
<p>Since Reticulum is designed to survive running over open radio spectrum, no such trust exists, and bandwidth
is often very limited. Existing routing protocols like BGP or OSPF carry too much overhead to be practically
useable over bandwidth-limited, high-latency links.</p>
<p>To overcome such challenges, Reticulums <em>Transport</em> system uses public-key cryptography to
implement the concept of <em>paths</em> that allow discovery of how to get information closer to a certain
destination. It is important to note that no single node in a Reticulum network knows the complete
path to a destination. Every Transport node participating in a Reticulum network will only
know what the most direct way to get a packet one hop closer to its destination is.</p>
<div class="section" id="node-types">
<span id="understanding-nodetypes"></span><h3>Node Types<a class="headerlink" href="#node-types" title="Permalink to this headline"></a></h3>
<p>Currently, Reticulum distinguishes between two types of network nodes. All nodes on a Reticulum network
are <em>Reticulum Instances</em>, and some are alo <em>Transport Nodes</em>. If a system running Reticulum is fixed in
one place, and is intended to be kept available most of the time, it can be a <em>Transport Node</em>, by enabling
it in the configuration.</p>
<p>This distinction is made by the user configuring the node, and is used to determine what nodes on the
network will help forward traffic, and what nodes rely on other nodes for wider connectivity.</p>
<p>If a node is a <em>Instance</em> it should be given the configuration directive <code class="docutils literal notranslate"><span class="pre">enable_transport</span> <span class="pre">=</span> <span class="pre">No</span></code>, which
is the default setting.</p>
<p>If it is a <em>Transport Node</em>, it should be given the configuration directive <code class="docutils literal notranslate"><span class="pre">enable_transport</span> <span class="pre">=</span> <span class="pre">Yes</span></code>.</p>
</div>
<div class="section" id="the-announce-mechanism-in-detail">
<span id="understanding-announce"></span><h3>The Announce Mechanism in Detail<a class="headerlink" href="#the-announce-mechanism-in-detail" title="Permalink to this headline"></a></h3>
<p>When an <em>announce</em> is transmitted by from a Reticulum instance, it will be forwarded by any transport node receiving it, but
according to some specific rules:</p>
<ul>
<li><div class="line-block">
<div class="line">If this exact announce has already been received before, ignore it.</div>
</div>
</li>
<li><div class="line-block">
<div class="line">If not, record into a table which node the announce was received from, and how many times in
total it has been retransmitted to get here.</div>
</div>
</li>
<li><div class="line-block">
<div class="line">If the announce has been retransmitted <em>m+1</em> times, it will not be forwarded. By default, <em>m</em> is
set to 128.</div>
</div>
</li>
<li><div class="line-block">
<div class="line">The announce will be assigned a delay <em>d</em> = c<sup>h</sup> seconds, where <em>c</em> is a decay constant, and <em>h</em> is the amount of times this packet has already been forwarded.</div>
</div>
</li>
<li><div class="line-block">
<div class="line">The packet will be given a priority <em>p = 1/d</em>.</div>
</div>
</li>
<li><div class="line-block">
<div class="line">If at least <em>d</em> seconds has passed since the announce was received, and no other packets with a
priority higher than <em>p</em> are waiting in the queue, and the channel is
not utilized by other traffic, the announce will be forwarded.</div>
</div>
</li>
<li><div class="line-block">
<div class="line">If no other nodes are heard retransmitting the announce with a greater hop count than when
it left this node, transmitting it will be retried <em>r</em> times. By default, <em>r</em> is set to 1. Retries
follow same rules as above, with the exception that it must wait for at least <em>d</em> = c<sup>h+1</sup> +
t + rand(0, rw) seconds. This amount of time is equal to the amount of time it would take the next
node to retransmit the packet, plus a random window. By default, <em>t</em> is set to 10 seconds, and the
random window <em>rw</em> is set to 10 seconds.</div>
</div>
</li>
<li><div class="line-block">
<div class="line">If a newer announce from the same destination arrives, while an identical one is already in
the queue, the newest announce is discarded. If the newest announce contains different
application specific data, it will replace the old announce, but will use <em>d</em> and <em>p</em> of the old
announce.</div>
</div>
</li>
</ul>
<p>Once an announce has reached a node in the network, any other node in direct contact with that
node will be able to reach the destination the announce originated from, simply by sending a packet
addressed to that destination. Any node with knowledge of the announce will be able to direct the
packet towards the destination by looking up the next node with the shortest amount of hops to the
destination.</p>
<p>According to these rules and default constants, an announce will propagate throughout the network
in a predictable way.</p>
<p>As an example, in a network based only on radio transceivers with an average link distance of 15
kilometers, an announce will be able to propagate outwards over 12 hops, to a radius of 180
kilometers, in approximately 20 minutes.</p>
<p>The design and constants of the decay and delay functionality in the announce propagation is subject
to change and optimisation as real-world usage is explored. The announce propagation speed can be
increased at the cost of increased bandwidth consumption.</p>
</div>
<div class="section" id="reaching-the-destination">
<span id="understanding-paths"></span><h3>Reaching the Destination<a class="headerlink" href="#reaching-the-destination" title="Permalink to this headline"></a></h3>
<p>In networks with changing topology and trustless connectivity, nodes need a way to establish
<em>verified connectivity</em> with each other. Since the network is assumed to be trustless, Reticulum
must provide a way to guarantee that the peer you are communicating with is actually who you
expect. Reticulum offers two ways to do this.</p>
<p>For exchanges of small amounts of information, Reticulum offers the <em>Packet</em> API, which works exactly like you would expect - on a per packet level. The following process is employed when sending a packet:</p>
<ul>
<li><div class="line-block">
<div class="line">A packet is always created with an associated destination and some payload data. When the packet is sent
to a <em>single</em> destination type, Reticulum will automatically create an ephemeral encryption key, perform
an ECDH key exchange with the destinations public key, and encrypt the information.</div>
</div>
</li>
<li><div class="line-block">
<div class="line">It is important to note that this key exchange does not require any network traffic. The sender already
knows the public key of the destination from an earlier received <em>announce</em>, and can thus perform the ECDH
key exchange locally, before sending the packet.</div>
</div>
</li>
<li><div class="line-block">
<div class="line">The public part of the newly generated ephemeral key-pair is included with the encrypted token, and sent
along with the encrypted payload data in the packet.</div>
</div>
</li>
<li><div class="line-block">
<div class="line">When the destination receives the packet, it can itself perform an ECDH key exchange and decrypt the
packet.</div>
</div>
</li>
<li><div class="line-block">
<div class="line">A new ephemeral key is used for every packet sent in this way, and forward secrecy is guaranteed on a
per packet level.</div>
</div>
</li>
<li><div class="line-block">
<div class="line">Once the packet has been received and decrypted by the addressed destination, that destination can opt
to <em>prove</em> its receipt of the packet. It does this by calculating the SHA-256 hash of the received packet,
and signing this hash with its Ed25519 signing key. Transport nodes in the network can then direct this
<em>proof</em> back to the packets origin, where the signature can be verified against the destinations known
public signing key.</div>
</div>
</li>
<li><div class="line-block">
<div class="line">In case the packet is addressed to a <em>group</em> destination type, the packet will be encrypted with the
pre-shared AES-128 key associated with the destination. In case the packet is addressed to a <em>plain</em>
destination type, the payload data will not be encrypted. Neither of these two destination types offer
forward secrecy. In general, it is recommended to always use the <em>single</em> destination type, unless it is
strictly necessary to use one of the others.</div>
</div>
</li>
</ul>
<p>For exchanges of larger amounts of data, or when longer sessions of bidirectional communication is desired, Reticulum offers the <em>Link</em> API. To establish a <em>link</em>, the following process is employed:</p>
<ul>
<li><div class="line-block">
<div class="line">First, the node that wishes to establish a link will send out a special packet, that
traverses the network and locates the desired destination. Along the way, the nodes that
forward the packet will take note of this <em>link request</em>.</div>
</div>
</li>
<li><div class="line-block">
<div class="line">Second, if the destination accepts the <em>link request</em> , it will send back a packet that proves the
authenticity of its identity (and the receipt of the link request) to the initiating node. All
nodes that initially forwarded the packet will also be able to verify this proof, and thus
accept the validity of the <em>link</em> throughout the network.</div>
</div>
</li>
<li><div class="line-block">
<div class="line">When the validity of the <em>link</em> has been accepted by forwarding nodes, these nodes will
remember the <em>link</em> , and it can subsequently be used by referring to a hash representing it.</div>
</div>
</li>
<li><div class="line-block">
<div class="line">As a part of the <em>link request</em> , a Diffie-Hellman key exchange takes place, that sets up an
efficiently encrypted tunnel between the two nodes, using elliptic curve cryptography. As such,
this mode of communication is preferred, even for situations when nodes can directly communicate,
when the amount of data to be exchanged numbers in the tens of packets.</div>
</div>
</li>
<li><div class="line-block">
<div class="line">When a <em>link</em> has been set up, it automatically provides message receipt functionality, through
the same <em>proof</em> mechanism discussed before, so the sending node can obtain verified confirmation
that the information reached the intended recipient.</div>
</div>
</li>
</ul>
<p>In a moment, we will discuss the details of how this methodology is implemented, but lets first
recap what purposes this methodology serves. We first ensure that the node answering our request
is actually the one we want to communicate with, and not a malicious actor pretending to be so.
At the same time we establish an efficient encrypted channel. The setup of this is relatively cheap in
terms of bandwidth, so it can be used just for a short exchange, and then recreated as needed, which will
also rotate encryption keys. The link can also be kept alive for longer periods of time, if this is
more suitable to the application. The procedure also inserts the <em>link id</em> , a hash calculated from the link request packet, into the memory of forwarding nodes, which means that the communicating nodes can thereafter reach each other simply by referring to this <em>link id</em>.</p>
<p>The combined bandwidth cost of setting up a link is 3 packets totalling 237 bytes (more info in the
<a class="reference internal" href="#understanding-packetformat"><span class="std std-ref">Binary Packet Format</span></a> section). The amount of bandwidth used on keeping
a link open is practically negligible, at 0.62 bits per second. Even on a slow 1200 bits per second packet
radio channel, 100 concurrent links will still leave 95% channel capacity for actual data.</p>
<div class="section" id="link-establishment-in-detail">
<h4>Link Establishment in Detail<a class="headerlink" href="#link-establishment-in-detail" title="Permalink to this headline"></a></h4>
<p>After exploring the basics of the announce mechanism, finding a path through the network, and an overview
of the link establishment procedure, this section will go into greater detail about the Reticulum link
establishment process.</p>
<p>The <em>link</em> in Reticulum terminology should not be viewed as a direct node-to-node link on the
physical layer, but as an abstract channel, that can be open for any amount of time, and can span
an arbitrary number of hops, where information will be exchanged between two nodes.</p>
<ul>
<li><div class="line-block">
<div class="line">When a node in the network wants to establish verified connectivity with another node, it
will randomly generate a new X25519 private/public key pair. It then creates a <em>link request</em>
packet, and broadcast it.</div>
<div class="line"><br /></div>
<div class="line"><em>It should be noted that the X25519 public/private keypair mentioned above is two separate keypairs:
An encryption key pair, used for derivation of a shared symmetric key, and a signing key pair, used
for signing and verifying messages on the link. They are sent together over the wire, and can be
considered as single public key for simplicity in this explanation.</em></div>
</div>
</li>
<li><div class="line-block">
<div class="line">The <em>link request</em> is addressed to the destination hash of the desired destination, and
contains the following data: The newly generated X25519 public key <em>LKi</em>.</div>
</div>
</li>
<li><div class="line-block">
<div class="line">The broadcasted packet will be directed through the network according to the rules laid out
previously.</div>
</div>
</li>
<li><div class="line-block">
<div class="line">Any node that forwards the link request will store a <em>link id</em> in its <em>link table</em> , along with the
amount of hops the packet had taken when received. The link id is a hash of the entire link
request packet. If the link request packet is not <em>proven</em> by the addressed destination within some
set amount of time, the entry will be dropped from the <em>link table</em> again.</div>
</div>
</li>
<li><div class="line-block">
<div class="line">When the destination receives the link request packet, it will decide whether to accept the request.
If it is accepted, the destination will also generate a new X25519 private/public key pair, and
perform a Diffie Hellman Key Exchange, deriving a new symmetric key that will be used to encrypt the
channel, once it has been established.</div>
</div>
</li>
<li><div class="line-block">
<div class="line">A <em>link proof</em> packet is now constructed and transmitted over the network. This packet is
addressed to the <em>link id</em> of the <em>link</em>. It contains the following data: The newly generated X25519
public key <em>LKr</em> and an Ed25519 signature of the <em>link id</em> and <em>LKr</em> made by the signing key of
the addressed destination.</div>
</div>
</li>
<li><div class="line-block">
<div class="line">By verifying this <em>link proof</em> packet, all nodes that originally transported the <em>link request</em>
packet to the destination from the originator can now verify that the intended destination received
the request and accepted it, and that the path they chose for forwarding the request was valid.
In sucessfully carrying out this verification, the transporting nodes marks the link as active.
An abstract bi-directional communication channel has now been established along a path in the network.</div>
</div>
</li>
<li><div class="line-block">
<div class="line">When the source receives the <em>proof</em> , it will know unequivocally that a verified path has been
established to the destination. It can now also use the X25519 public key contained in the
<em>link proof</em> to perform its own Diffie Hellman Key Exchange and derive the symmetric key
that is used to encrypt the channel. Information can now be exchanged reliably and securely.</div>
</div>
</li>
</ul>
<p>Its important to note that this methodology ensures that the source of the request does not need to
reveal any identifying information about itself. The link initiator remains completely anonymous.</p>
<p>When using <em>links</em>, Reticulum will automatically verify all data sent over the link, and can also
automate retransmissions if <em>Resources</em> are used.</p>
</div>
</div>
<div class="section" id="resources">
<span id="understanding-resources"></span><h3>Resources<a class="headerlink" href="#resources" title="Permalink to this headline"></a></h3>
<p>For exchanging small amounts of data over a Reticulum network, the <a class="reference internal" href="reference.html#api-packet"><span class="std std-ref">Packet</span></a> interface
is sufficient, but for exchanging data that would require many packets, an efficient way to coordinate
the transfer is needed.</p>
<p>This is the purpose of the Reticulum <a class="reference internal" href="reference.html#api-resource"><span class="std std-ref">Resource</span></a>. A <em>Resource</em> can automatically
handle the reliable transfer of an arbitrary amount of data over an established <a class="reference internal" href="reference.html#api-link"><span class="std std-ref">Link</span></a>.
Resources can auto-compress data, will handle breaking the data into individual packets, sequencing
the transfer, integrity verification and reassembling the data on the other end.</p>
<p><a class="reference internal" href="reference.html#api-resource"><span class="std std-ref">Resources</span></a> are programmatically very simple to use, and only requires a few lines
of codes to reliably transfer any amount of data. They can be used to transfer data stored in memory,
or stream data directly from files.</p>
</div>
</div>
<div class="section" id="reference-setup">
<span id="understanding-referencesystem"></span><h2>Reference Setup<a class="headerlink" href="#reference-setup" title="Permalink to this headline"></a></h2>
<p>This section will detail a recommended <em>Reference Setup</em> for Reticulum. It is important to
note that Reticulum is designed to be usable on more or less any computing device, and over more
or less any medium that allows you to send and receive data, which satisfies some very low
minimum requirements.</p>
<p>The communication channel must support at least half-duplex operation, and provide an average
throughput of around 500 bits per second, and supports a physical layer MTU of 500 bytes. The
Reticulum stack should be able to run on more or less any hardware that can provide a Python 3.x
runtime environment.</p>
<p>That being said, this reference setup has been outlined to provide a common platform for anyone
who wants to help in the development of Reticulum, and for everyone who wants to know a
recommended setup to get started experimenting. A reference system consists of three parts:</p>
<ul class="simple">
<li><dl class="simple">
<dt><strong>An Interface Device</strong></dt><dd><p>Which provides access to the physical medium whereupon the communication
takes place, for example a radio with an integrated modem. A setup with a separate modem
connected to a radio would also be an interface device.</p>
</dd>
</dl>
</li>
<li><dl class="simple">
<dt><strong>A Host Device</strong></dt><dd><p>Some sort of computing device that can run the necessary software, communicate with the
interface device, and provide user interaction.</p>
</dd>
</dl>
</li>
<li><dl class="simple">
<dt><strong>A Software Stack</strong></dt><dd><p>The software implementing the Reticulum protocol and applications using it.</p>
</dd>
</dl>
</li>
</ul>
<p>The reference setup can be considered a relatively stable platform to develop on, and also to start
building networks or applications on. While details of the implementation might change at the current stage of
development, it is the goal to maintain hardware compatibility for as long as entirely possible, and
the current reference setup has been determined to provide a functional platform for many years
into the future. The current Reference System Setup is as follows:</p>
<ul class="simple">
<li><dl class="simple">
<dt><strong>Interface Device</strong></dt><dd><p>A data radio consisting of a LoRa radio module, and a microcontroller with open source
firmware, that can connect to host devices via USB. It operates in either the 430, 868 or 900
MHz frequency bands. More details can be found on the <a class="reference external" href="https://unsigned.io/rnode">RNode Page</a>.</p>
</dd>
</dl>
</li>
<li><dl class="simple">
<dt><strong>Host Device</strong></dt><dd><p>Any computer device running Linux and Python. A Raspberry Pi with a Debian based OS is
recommended.</p>
</dd>
</dl>
</li>
<li><dl class="simple">
<dt><strong>Software Stack</strong></dt><dd><p>The most recently released Python Implementation of Reticulum, running on a Debian based
operating system.</p>
</dd>
</dl>
</li>
</ul>
<p>To avoid confusion, it is very important to note, that the reference interface device <strong>does not</strong>
use the LoRaWAN standard, but uses a custom MAC layer on top of the plain LoRa modulation! As such, you will
need a plain LoRa radio module connected to an controller with the correct firmware. Full details on how to
get or make such a device is available on the <a class="reference external" href="https://unsigned.io/rnode">RNode Page</a>.</p>
<p>With the current reference setup, it should be possible to get on a Reticulum network for around 100$
even if you have none of the hardware already, and need to purchase everything.</p>
<p>This reference setup is of course just a recommendation for getting started easily, and you should
tailor it to your own specific needs, or whatever hardware you have available.</p>
</div>
<div class="section" id="protocol-specifics">
<span id="understanding-protocolspecifics"></span><h2>Protocol Specifics<a class="headerlink" href="#protocol-specifics" title="Permalink to this headline"></a></h2>
<p>This chapter will detail protocol specific information that is essential to the implementation of
Reticulum, but non critical in understanding how the protocol works on a general level. It should be
treated more as a reference than as essential reading.</p>
<div class="section" id="packet-prioritisation">
<h3>Packet Prioritisation<a class="headerlink" href="#packet-prioritisation" title="Permalink to this headline"></a></h3>
<p>Currently, Reticulum is completely priority-agnostic regarding general traffic. All traffic is handled
on a first-come, first-serve basis. Announce re-transmission are handled according to the re-transmission
times and priorities described earlier in this chapter.</p>
</div>
<div class="section" id="binary-packet-format">
<span id="understanding-packetformat"></span><h3>Binary Packet Format<a class="headerlink" href="#binary-packet-format" title="Permalink to this headline"></a></h3>
<div class="highlight-text notranslate"><div class="highlight"><pre><span></span>== Reticulum Wire Format ======
A Reticulum packet is composed of the following fields:
[HEADER 2 bytes] [ADDRESSES 10/20 bytes] [CONTEXT 1 byte] [DATA 0-477 bytes]
* The HEADER field is 2 bytes long.
* Byte 1: [Header Type], [Propagation Type], [Destination Type] and [Packet Type]
* Byte 2: Number of hops
* The ADDRESSES field contains either 1 or 2 addresses.
* Each address is 10 bytes long.
* The Header Type flag in the HEADER field determines
whether the ADDRESSES field contains 1 or 2 addresses.
* Addresses are Reticulum hashes truncated to 10 bytes.
* The CONTEXT field is 1 byte.
* It is used by Reticulum to determine packet context.
* The DATA field is between 0 and 477 bytes.
* It contains the packets data payload.
Header Types
-----------------
type 1 00 Two byte header, one 10 byte address field
type 2 01 Two byte header, two 10 byte address fields
type 3 10 Reserved
type 4 11 Reserved
Propagation Types
-----------------
broadcast 00
transport 01
reserved 10
reserved 11
Destination Types
-----------------
single 00
group 01
plain 10
link 11
Packet Types
-----------------
data 00
announce 01
link request 10
proof 11
+- Packet Example -+
HEADER FIELD DESTINATION FIELDS CONTEXT FIELD DATA FIELD
_______|_______ ________________|________________ ________|______ __|_
| | | | | | | |
01010000 00000100 [ADDR1, 10 bytes] [ADDR2, 10 bytes] [CONTEXT, 1 byte] [DATA]
| | | | |
| | | | +-- Hops = 4
| | | +------- Packet Type = DATA
| | +--------- Destination Type = SINGLE
| +----------- Propagation Type = TRANSPORT
+------------- Header Type = HEADER_2 (two byte header, two address fields)
+- Packet Example -+
HEADER FIELD DESTINATION FIELD CONTEXT FIELD DATA FIELD
_______|_______ _______|_______ ________|______ __|_
| | | | | | | |
00000000 00000111 [ADDR1, 10 bytes] [CONTEXT, 1 byte] [DATA]
| | | | |
| | | | +-- Hops = 7
| | | +------- Packet Type = DATA
| | +--------- Destination Type = SINGLE
| +----------- Propagation Type = BROADCAST
+------------- Header Type = HEADER_1 (two byte header, one address field)
Size examples of different packet types
---------------------------------------
The following table lists example sizes of various
packet types. The size listed are the complete on-
wire size including all fields.
- Path Request : 33 bytes
- Announce : 151 bytes
- Link Request : 77 bytes
- Link Proof : 77 bytes
- Link RTT packet : 83 bytes
- Link keepalive : 14 bytes
</pre></div>
</div>
</div>
</div>
</div>
<div class="clearer"></div>
</div>
</div>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<h3><a href="index.html">Table of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">Understanding Reticulum</a><ul>
<li><a class="reference internal" href="#motivation">Motivation</a></li>
<li><a class="reference internal" href="#goals">Goals</a></li>
<li><a class="reference internal" href="#introduction-basic-functionality">Introduction &amp; Basic Functionality</a><ul>
<li><a class="reference internal" href="#destinations">Destinations</a><ul>
<li><a class="reference internal" href="#destination-naming">Destination Naming</a></li>
</ul>
</li>
<li><a class="reference internal" href="#public-key-announcements">Public Key Announcements</a></li>
<li><a class="reference internal" href="#understanding-identities">Identities</a></li>
<li><a class="reference internal" href="#getting-further">Getting Further</a></li>
</ul>
</li>
<li><a class="reference internal" href="#reticulum-transport">Reticulum Transport</a><ul>
<li><a class="reference internal" href="#node-types">Node Types</a></li>
<li><a class="reference internal" href="#the-announce-mechanism-in-detail">The Announce Mechanism in Detail</a></li>
<li><a class="reference internal" href="#reaching-the-destination">Reaching the Destination</a><ul>
<li><a class="reference internal" href="#link-establishment-in-detail">Link Establishment in Detail</a></li>
</ul>
</li>
<li><a class="reference internal" href="#resources">Resources</a></li>
</ul>
</li>
<li><a class="reference internal" href="#reference-setup">Reference Setup</a></li>
<li><a class="reference internal" href="#protocol-specifics">Protocol Specifics</a><ul>
<li><a class="reference internal" href="#packet-prioritisation">Packet Prioritisation</a></li>
<li><a class="reference internal" href="#binary-packet-format">Binary Packet Format</a></li>
</ul>
</li>
</ul>
</li>
</ul>
<h4>Previous topic</h4>
<p class="topless"><a href="interfaces.html"
title="previous chapter">Supported Interfaces</a></p>
<h4>Next topic</h4>
<p class="topless"><a href="reference.html"
title="next chapter">API Reference</a></p>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/understanding.rst.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3 id="searchlabel">Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="search.html" method="get">
<input type="text" name="q" aria-labelledby="searchlabel" />
<input type="submit" value="Go" />
</form>
</div>
</div>
<script>$('#searchbox').show(0);</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="reference.html" title="API Reference"
>next</a> |</li>
<li class="right" >
<a href="interfaces.html" title="Supported Interfaces"
>previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">Reticulum Network Stack 0.3.4 beta documentation</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">Understanding Reticulum</a></li>
</ul>
</div>
<div class="footer" role="contentinfo">
&#169; Copyright 2021, Mark Qvist.
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 4.0.1.
</div>
</body>
</html>