# MIT License # # Copyright (c) 2016-2022 Mark Qvist / unsigned.io # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from RNS.Interfaces.Interface import Interface from time import sleep import sys import threading import time import math import RNS try: from able import BluetoothDispatcher, GATT_SUCCESS except Exception as e: GATT_SUCCESS = 0x00 class BluetoothDispatcher(): def __init__(**kwargs): RNS.log("Attempt to initialise BLE connectivity, but Android BLE support library is unavailable", RNS.LOG_ERROR) raise OSError("No BLE support available") class KISS(): FEND = 0xC0 FESC = 0xDB TFEND = 0xDC TFESC = 0xDD CMD_UNKNOWN = 0xFE CMD_DATA = 0x00 CMD_FREQUENCY = 0x01 CMD_BANDWIDTH = 0x02 CMD_TXPOWER = 0x03 CMD_SF = 0x04 CMD_CR = 0x05 CMD_RADIO_STATE = 0x06 CMD_RADIO_LOCK = 0x07 CMD_ST_ALOCK = 0x0B CMD_LT_ALOCK = 0x0C CMD_DETECT = 0x08 CMD_LEAVE = 0x0A CMD_READY = 0x0F CMD_STAT_RX = 0x21 CMD_STAT_TX = 0x22 CMD_STAT_RSSI = 0x23 CMD_STAT_SNR = 0x24 CMD_STAT_CHTM = 0x25 CMD_STAT_PHYPRM = 0x26 CMD_STAT_BAT = 0x27 CMD_BLINK = 0x30 CMD_RANDOM = 0x40 CMD_FB_EXT = 0x41 CMD_FB_READ = 0x42 CMD_FB_WRITE = 0x43 CMD_BT_CTRL = 0x46 CMD_PLATFORM = 0x48 CMD_MCU = 0x49 CMD_FW_VERSION = 0x50 CMD_ROM_READ = 0x51 CMD_RESET = 0x55 DETECT_REQ = 0x73 DETECT_RESP = 0x46 RADIO_STATE_OFF = 0x00 RADIO_STATE_ON = 0x01 RADIO_STATE_ASK = 0xFF CMD_ERROR = 0x90 ERROR_INITRADIO = 0x01 ERROR_TXFAILED = 0x02 ERROR_EEPROM_LOCKED = 0x03 ERROR_QUEUE_FULL = 0x04 ERROR_MEMORY_LOW = 0x05 ERROR_MODEM_TIMEOUT = 0x06 ERROR_INVALID_FIRMWARE = 0x10 ERROR_INVALID_BLE_MTU = 0x20 PLATFORM_AVR = 0x90 PLATFORM_ESP32 = 0x80 PLATFORM_NRF52 = 0x70 @staticmethod def escape(data): data = data.replace(bytes([0xdb]), bytes([0xdb, 0xdd])) data = data.replace(bytes([0xc0]), bytes([0xdb, 0xdc])) return data class AndroidBluetoothManager(): DEVICE_TYPE_CLASSIC = 1 DEVICE_TYPE_LE = 2 DEVICE_TYPE_DUAL = 3 def __init__(self, owner, target_device_name = None, target_device_address = None): from jnius import autoclass self.owner = owner self.connected = False self.target_device_name = target_device_name self.target_device_address = target_device_address self.potential_remote_devices = [] self.rfcomm_socket = None self.connected_device = None self.connection_failed = False self.bt_adapter = autoclass('android.bluetooth.BluetoothAdapter') self.bt_device = autoclass('android.bluetooth.BluetoothDevice') self.bt_socket = autoclass('android.bluetooth.BluetoothSocket') self.bt_rfcomm_service_record = autoclass('java.util.UUID').fromString("00001101-0000-1000-8000-00805F9B34FB") self.buffered_input_stream = autoclass('java.io.BufferedInputStream') def connect(self, device_address=None): self.rfcomm_socket = self.remote_device.createRfcommSocketToServiceRecord(self.bt_rfcomm_service_record) def bt_enabled(self): return self.bt_adapter.getDefaultAdapter().isEnabled() def get_paired_devices(self): if self.bt_enabled(): return self.bt_adapter.getDefaultAdapter().getBondedDevices() else: RNS.log("Could not query paired devices, Bluetooth is disabled", RNS.LOG_EXTREME) return [] def get_potential_devices(self): potential_devices = [] for device in self.get_paired_devices(): if self.target_device_address != None: if str(device.getAddress()).replace(":", "").lower() == str(self.target_device_address).replace(":", "").lower(): if self.target_device_name == None: potential_devices.append(device) else: if device.getName().lower() == self.target_device_name.lower(): potential_devices.append(device) elif self.target_device_name != None: if device.getName().lower() == self.target_device_name.lower(): potential_devices.append(device) else: if device.getName().lower().startswith("rnode "): potential_devices.append(device) return potential_devices def connect_any_device(self): if (self.rfcomm_socket != None and not self.rfcomm_socket.isConnected()) or self.rfcomm_socket == None: self.connection_failed = False if len(self.potential_remote_devices) == 0: self.potential_remote_devices = self.get_potential_devices() if len(self.potential_remote_devices) == 0: RNS.log("No suitable bluetooth devices available, can't connect", RNS.LOG_DEBUG) return while not self.connected and len(self.potential_remote_devices) > 0: device = self.potential_remote_devices.pop() try: self.rfcomm_socket = device.createRfcommSocketToServiceRecord(self.bt_rfcomm_service_record) if self.rfcomm_socket == None: raise OSError("Bluetooth stack returned no socket object") else: if not self.rfcomm_socket.isConnected(): try: self.rfcomm_socket.connect() self.rfcomm_reader = self.buffered_input_stream(self.rfcomm_socket.getInputStream(), 1024) self.rfcomm_writer = self.rfcomm_socket.getOutputStream() self.connected = True self.connected_device = device RNS.log(f"Bluetooth device {self.connected_device.getName()} {self.connected_device.getAddress()} connected.") except Exception as e: raise OSError(f"The Bluetooth RFcomm socket could not be connected: {e}") except Exception as e: RNS.log(f"Could not create and connect Bluetooth RFcomm socket for {device.getName()} {device.getAddress()}", RNS.LOG_EXTREME) RNS.log(f"The contained exception was: {e}", RNS.LOG_EXTREME) def close(self): if self.connected: if self.rfcomm_reader != None: self.rfcomm_reader.close() self.rfcomm_reader = None if self.rfcomm_writer != None: self.rfcomm_writer.close() self.rfcomm_writer = None if self.rfcomm_socket != None: self.rfcomm_socket.close() self.connected = False self.connected_device = None self.potential_remote_devices = [] def read(self, len = None): if self.connection_failed: raise OSError("Bluetooth connection failed") else: if self.connected and self.rfcomm_reader != None: available = self.rfcomm_reader.available() if available > 0: if hasattr(self.rfcomm_reader, "readNBytes"): return self.rfcomm_reader.readNBytes(available) else: # Compatibility mode for older android versions lacking readNBytes rb = self.rfcomm_reader.read().to_bytes(1, "big") return rb else: return bytes([]) else: raise OSError("No RFcomm socket available") def write(self, data): try: self.rfcomm_writer.write(data) self.rfcomm_writer.flush() return len(data) except Exception as e: RNS.log(f"Bluetooth connection failed for {self}", RNS.LOG_ERROR) self.connection_failed = True return 0 class RNodeInterface(Interface): MAX_CHUNK = 32768 FREQ_MIN = 137000000 FREQ_MAX = 1020000000 RSSI_OFFSET = 157 CALLSIGN_MAX_LEN = 32 REQUIRED_FW_VER_MAJ = 1 REQUIRED_FW_VER_MIN = 52 RECONNECT_WAIT = 5 PORT_IO_TIMEOUT = 3 Q_SNR_MIN_BASE = -9 Q_SNR_MAX = 6 Q_SNR_STEP = 2 BATTERY_STATE_UNKNOWN = 0x00 BATTERY_STATE_DISCHARGING = 0x01 BATTERY_STATE_CHARGING = 0x02 BATTERY_STATE_CHARGED = 0x03 @classmethod def bluetooth_control(device_serial = None, port = None, enable_bluetooth = False, disable_bluetooth = False, pairing_mode = False): if (port != None or device_serial != None) and (enable_bluetooth or disable_bluetooth or pairing_mode): serial = None bluetooth_state = None if pairing_mode: bluetooth_state = 0x01 elif enable_bluetooth: bluetooth_state = 0x01 elif disable_bluetooth: bluetooth_state = 0x00 if port != None: RNS.log(f"Opening serial port {port}...") # Get device parameters from usb4a import usb device = usb.get_usb_device(port) if device: vid = device.getVendorId() pid = device.getProductId() # Driver overrides for speficic chips from usbserial4a import serial4a as pyserial proxy = pyserial.get_serial_port if vid == 0x1A86 and pid == 0x55D4: # Force CDC driver for Qinheng CH34x RNS.log(f"Using CDC driver for {RNS.hexrep(vid)}:{RNS.hexrep(pid)}", RNS.LOG_DEBUG) from usbserial4a.cdcacmserial4a import CdcAcmSerial proxy = CdcAcmSerial serial = proxy( port, baudrate = 115200, bytesize = 8, parity = "N", stopbits = 1, xonxoff = False, rtscts = False, timeout = None, inter_byte_timeout = None, # write_timeout = wtimeout, dsrdtr = False, ) if vid == 0x0403: # Hardware parameters for FTDI devices @ 115200 baud serial.DEFAULT_READ_BUFFER_SIZE = 16 * 1024 serial.USB_READ_TIMEOUT_MILLIS = 100 serial.timeout = 0.1 elif vid == 0x10C4: # Hardware parameters for SiLabs CP210x @ 115200 baud serial.DEFAULT_READ_BUFFER_SIZE = 64 serial.USB_READ_TIMEOUT_MILLIS = 12 serial.timeout = 0.012 elif vid == 0x1A86 and pid == 0x55D4: # Hardware parameters for Qinheng CH34x @ 115200 baud serial.DEFAULT_READ_BUFFER_SIZE = 64 serial.USB_READ_TIMEOUT_MILLIS = 12 serial.timeout = 0.1 else: # Default values serial.DEFAULT_READ_BUFFER_SIZE = 1 * 1024 serial.USB_READ_TIMEOUT_MILLIS = 100 serial.timeout = 0.1 elif device_serial != None: serial = device_serial if serial != None: if serial.is_open: kiss_command = bytes([KISS.FEND, KISS.CMD_BT_CTRL, bluetooth_state, KISS.FEND]) serial.write(kiss_command) if pairing_mode: kiss_command = bytes([KISS.FEND, KISS.CMD_BT_CTRL, 0x02, KISS.FEND]) serial.write(kiss_command) if port != None: serial.close() def __init__( self, owner, name, port, frequency = None, bandwidth = None, txpower = None, sf = None, cr = None, flow_control = False, id_interval = None, allow_bluetooth = False, target_device_name = None, target_device_address = None, id_callsign = None, st_alock = None, lt_alock = None, ble_addr = None, ble_name = None, force_ble=False): import importlib if RNS.vendor.platformutils.is_android(): self.on_android = True if importlib.util.find_spec('usbserial4a') != None: if importlib.util.find_spec('jnius') == None: RNS.log("Could not load jnius API wrapper for Android, RNode interface cannot be created.", RNS.LOG_CRITICAL) RNS.log("This probably means you are trying to use an USB-based interface from within Termux or similar.", RNS.LOG_CRITICAL) RNS.log("This is currently not possible, due to this environment limiting access to the native Android APIs.", RNS.LOG_CRITICAL) RNS.panic() from usbserial4a import serial4a as serial self.parity = "N" self.bt_target_device_name = target_device_name self.bt_target_device_address = target_device_address if allow_bluetooth: self.bt_manager = AndroidBluetoothManager( owner = self, target_device_name = self.bt_target_device_name, target_device_address = self.bt_target_device_address ) else: self.bt_manager = None else: RNS.log("Could not load USB serial module for Android, RNode interface cannot be created.", RNS.LOG_CRITICAL) RNS.log("You can install this module by issuing: pip install usbserial4a", RNS.LOG_CRITICAL) RNS.panic() else: raise SystemError("Android-specific interface was used on non-Android OS") super().__init__() self.HW_MTU = 508 self.pyserial = serial self.serial = None self.owner = owner self.name = name self.port = port self.speed = 115200 self.databits = 8 self.stopbits = 1 self.timeout = 150 self.online = False self.detached = False self.hw_errors = [] self.allow_bluetooth = allow_bluetooth self.use_ble = False self.ble_name = ble_name self.ble_addr = ble_addr self.ble = None self.ble_rx_lock = threading.Lock() self.ble_tx_lock = threading.Lock() self.ble_rx_queue= b"" self.ble_tx_queue= b"" self.frequency = frequency self.bandwidth = bandwidth self.txpower = txpower self.sf = sf self.cr = cr self.state = KISS.RADIO_STATE_OFF self.bitrate = 0 self.st_alock = st_alock self.lt_alock = lt_alock self.platform = None self.display = None self.mcu = None self.detected = False self.firmware_ok = False self.maj_version = 0 self.min_version = 0 self.last_id = 0 self.first_tx = None self.reconnect_w = RNodeInterface.RECONNECT_WAIT self.reconnect_lock = threading.Lock() self.r_frequency = None self.r_bandwidth = None self.r_txpower = None self.r_sf = None self.r_cr = None self.r_state = None self.r_lock = None self.r_stat_rx = None self.r_stat_tx = None self.r_stat_rssi = None self.r_stat_snr = None self.r_st_alock = None self.r_lt_alock = None self.r_random = None self.r_airtime_short = 0.0 self.r_airtime_long = 0.0 self.r_channel_load_short = 0.0 self.r_channel_load_long = 0.0 self.r_symbol_time_ms = None self.r_symbol_rate = None self.r_preamble_symbols = None self.r_premable_time_ms = None self.r_battery_state = RNodeInterface.BATTERY_STATE_UNKNOWN self.r_battery_percent = 0 self.packet_queue = [] self.flow_control = flow_control self.interface_ready = False self.announce_rate_target = None self.last_port_io = 0 self.port_io_timeout = RNodeInterface.PORT_IO_TIMEOUT self.last_imagedata = None if force_ble or self.ble_addr != None or self.ble_name != None: self.use_ble = True self.validcfg = True if (self.frequency < RNodeInterface.FREQ_MIN or self.frequency > RNodeInterface.FREQ_MAX): RNS.log(f"Invalid frequency configured for {self}", RNS.LOG_ERROR) self.validcfg = False if (self.txpower < 0 or self.txpower > 22): RNS.log(f"Invalid TX power configured for {self}", RNS.LOG_ERROR) self.validcfg = False if (self.bandwidth < 7800 or self.bandwidth > 500000): RNS.log(f"Invalid bandwidth configured for {self}", RNS.LOG_ERROR) self.validcfg = False if (self.sf < 5 or self.sf > 12): RNS.log(f"Invalid spreading factor configured for {self}", RNS.LOG_ERROR) self.validcfg = False if (self.cr < 5 or self.cr > 8): RNS.log(f"Invalid coding rate configured for {self}", RNS.LOG_ERROR) self.validcfg = False if (self.st_alock and (self.st_alock < 0.0 or self.st_alock > 100.0)): RNS.log(f"Invalid short-term airtime limit configured for {self}", RNS.LOG_ERROR) self.validcfg = False if (self.lt_alock and (self.lt_alock < 0.0 or self.lt_alock > 100.0)): RNS.log(f"Invalid long-term airtime limit configured for {self}", RNS.LOG_ERROR) self.validcfg = False if id_interval != None and id_callsign != None: if (len(id_callsign.encode("utf-8")) <= RNodeInterface.CALLSIGN_MAX_LEN): self.should_id = True self.id_callsign = id_callsign.encode("utf-8") self.id_interval = id_interval else: RNS.log(f"The encoded ID callsign for {self} exceeds the max length of {RNodeInterface.CALLSIGN_MAX_LEN} bytes.", RNS.LOG_ERROR) self.validcfg = False else: self.id_interval = None self.id_callsign = None if (not self.validcfg): raise ValueError(f"The configuration for {self} contains errors, interface is offline") try: self.open_port() if self.serial != None: if self.serial.is_open: self.configure_device() else: raise OSError("Could not open serial port") elif self.bt_manager != None: if self.bt_manager.connected: self.configure_device() else: raise OSError("Could not connect to any Bluetooth devices") else: raise OSError("Neither serial port nor Bluetooth devices available") except Exception as e: RNS.log(f"Could not open serial port for interface {self}", RNS.LOG_ERROR) RNS.log(f"The contained exception was: {e}", RNS.LOG_ERROR) if len(self.hw_errors) == 0: RNS.log("Reticulum will attempt to bring up this interface periodically", RNS.LOG_ERROR) thread = threading.Thread(target=self.reconnect_port, daemon=True).start() def read_mux(self, len=None): if self.serial != None: return self.serial.read() elif self.bt_manager != None: return self.bt_manager.read() else: raise OSError("No ports available for reading") def write_mux(self, data): if self.serial != None: written = self.serial.write(data) self.last_port_io = time.time() return written elif self.bt_manager != None: written = self.bt_manager.write(data) if (written == len(data)): self.last_port_io = time.time() return written else: raise OSError("No ports available for writing") # def reset_ble(self): # RNS.log(f"Clearing previous connection instance: "+str(self.ble)) # del self.ble # self.ble = None # self.serial = None # self.ble = BLEConnection(owner=self, target_name=self.ble_name, target_bt_addr=self.ble_addr) # self.serial = self.ble # RNS.log(f"New connection instance: "+str(self.ble)) def open_port(self): if not self.use_ble: if self.port != None: RNS.log(f"Opening serial port {self.port}...") # Get device parameters from usb4a import usb device = usb.get_usb_device(self.port) if device: vid = device.getVendorId() pid = device.getProductId() # Driver overrides for speficic chips proxy = self.pyserial.get_serial_port if vid == 0x1A86 and pid == 0x55D4: # Force CDC driver for Qinheng CH34x RNS.log(f"{self} using CDC driver for {RNS.hexrep(vid)}:{RNS.hexrep(pid)}", RNS.LOG_DEBUG) from usbserial4a.cdcacmserial4a import CdcAcmSerial proxy = CdcAcmSerial self.serial = proxy( self.port, baudrate = self.speed, bytesize = self.databits, parity = self.parity, stopbits = self.stopbits, xonxoff = False, rtscts = False, timeout = None, inter_byte_timeout = None, # write_timeout = wtimeout, dsrdtr = False, ) if vid == 0x0403: # Hardware parameters for FTDI devices @ 115200 baud self.serial.DEFAULT_READ_BUFFER_SIZE = 16 * 1024 self.serial.USB_READ_TIMEOUT_MILLIS = 100 self.serial.timeout = 0.1 elif vid == 0x10C4: # Hardware parameters for SiLabs CP210x @ 115200 baud self.serial.DEFAULT_READ_BUFFER_SIZE = 64 self.serial.USB_READ_TIMEOUT_MILLIS = 12 self.serial.timeout = 0.012 elif vid == 0x1A86 and pid == 0x55D4: # Hardware parameters for Qinheng CH34x @ 115200 baud self.serial.DEFAULT_READ_BUFFER_SIZE = 64 self.serial.USB_READ_TIMEOUT_MILLIS = 12 self.serial.timeout = 0.1 else: # Default values self.serial.DEFAULT_READ_BUFFER_SIZE = 1 * 1024 self.serial.USB_READ_TIMEOUT_MILLIS = 100 self.serial.timeout = 0.1 RNS.log(f"{self} USB read buffer size set to {RNS.prettysize(self.serial.DEFAULT_READ_BUFFER_SIZE)}", RNS.LOG_DEBUG) RNS.log(f"{self} USB read timeout set to {self.serial.USB_READ_TIMEOUT_MILLIS}ms", RNS.LOG_DEBUG) RNS.log(f"{self} USB write timeout set to {self.serial.USB_WRITE_TIMEOUT_MILLIS}ms", RNS.LOG_DEBUG) elif self.allow_bluetooth: if self.bt_manager == None: self.bt_manager = AndroidBluetoothManager( owner = self, target_device_name = self.bt_target_device_name, target_device_address = self.bt_target_device_address ) if self.bt_manager != None: self.bt_manager.connect_any_device() else: if self.ble == None: self.ble = BLEConnection(owner=self, target_name=self.ble_name, target_bt_addr=self.ble_addr) self.serial = self.ble open_time = time.time() while not self.ble.connected and time.time() < open_time + self.ble.CONNECT_TIMEOUT: time.sleep(1) def configure_device(self): self.resetRadioState() sleep(2.0) thread = threading.Thread(target=self.readLoop, daemon=True).start() self.detect() if not self.use_ble: sleep(0.5) else: ble_detect_timeout = 5 detect_time = time.time() while not self.detected and time.time() < detect_time + ble_detect_timeout: time.sleep(0.1) if self.detected: detect_time = RNS.prettytime(time.time()-detect_time) else: RNS.log(f"RNode detect timed out over {self.port}", RNS.LOG_ERROR) if not self.detected: raise OSError("Could not detect device") else: if self.platform == KISS.PLATFORM_ESP32 or self.platform == KISS.PLATFORM_NRF52: self.display = True if not self.firmware_ok: raise OSError("Invalid device firmware") if self.serial != None and self.port != None: self.timeout = 200 RNS.log(f"Serial port {self.port} is now open") if self.bt_manager != None and self.bt_manager.connected: self.timeout = 1500 RNS.log("Bluetooth connection to RNode now open") RNS.log("Configuring RNode interface...", RNS.LOG_VERBOSE) self.initRadio() if (self.validateRadioState()): self.interface_ready = True RNS.log(f"{self} is configured and powered up") sleep(0.3) self.online = True else: RNS.log(f"After configuring {self}, the reported radio parameters did not match your configuration.", RNS.LOG_ERROR) RNS.log("Make sure that your hardware actually supports the parameters specified in the configuration", RNS.LOG_ERROR) RNS.log("Aborting RNode startup", RNS.LOG_ERROR) if self.serial != None: self.serial.close() if self.bt_manager != None: self.bt_manager.close() raise OSError("RNode interface did not pass configuration validation") def initRadio(self): self.setFrequency() time.sleep(0.15) self.setBandwidth() time.sleep(0.15) self.setTXPower() time.sleep(0.15) self.setSpreadingFactor() time.sleep(0.15) self.setCodingRate() time.sleep(0.15) self.setSTALock() time.sleep(0.15) self.setLTALock() time.sleep(0.15) self.setRadioState(KISS.RADIO_STATE_ON) time.sleep(0.15) if self.use_ble: time.sleep(1) def detect(self): kiss_command = bytes([KISS.FEND, KISS.CMD_DETECT, KISS.DETECT_REQ, KISS.FEND, KISS.CMD_FW_VERSION, 0x00, KISS.FEND, KISS.CMD_PLATFORM, 0x00, KISS.FEND, KISS.CMD_MCU, 0x00, KISS.FEND]) written = self.write_mux(kiss_command) if written != len(kiss_command): raise OSError(f"An IO error occurred while detecting hardware for {self}") def leave(self): kiss_command = bytes([KISS.FEND, KISS.CMD_LEAVE, 0xFF, KISS.FEND]) written = self.write_mux(kiss_command) if written != len(kiss_command): raise OSError("An IO error occurred while sending host left command to device") def enable_bluetooth(self): kiss_command = bytes([KISS.FEND, KISS.CMD_BT_CTRL, 0x01, KISS.FEND]) written = self.write_mux(kiss_command) if written != len(kiss_command): raise OSError("An IO error occurred while sending bluetooth enable command to device") def disable_bluetooth(self): kiss_command = bytes([KISS.FEND, KISS.CMD_BT_CTRL, 0x00, KISS.FEND]) written = self.write_mux(kiss_command) if written != len(kiss_command): raise OSError("An IO error occurred while sending bluetooth disable command to device") def bluetooth_pair(self): kiss_command = bytes([KISS.FEND, KISS.CMD_BT_CTRL, 0x02, KISS.FEND]) written = self.write_mux(kiss_command) if written != len(kiss_command): raise OSError("An IO error occurred while sending bluetooth pair command to device") def enable_external_framebuffer(self): if self.display != None: kiss_command = bytes([KISS.FEND, KISS.CMD_FB_EXT, 0x01, KISS.FEND]) written = self.write_mux(kiss_command) if written != len(kiss_command): raise OSError("An IO error occurred while enabling external framebuffer on device") def disable_external_framebuffer(self): if self.display != None: kiss_command = bytes([KISS.FEND, KISS.CMD_FB_EXT, 0x00, KISS.FEND]) written = self.write_mux(kiss_command) if written != len(kiss_command): raise OSError("An IO error occurred while disabling external framebuffer on device") FB_PIXEL_WIDTH = 64 FB_BITS_PER_PIXEL = 1 FB_PIXELS_PER_BYTE = 8//FB_BITS_PER_PIXEL FB_BYTES_PER_LINE = FB_PIXEL_WIDTH//FB_PIXELS_PER_BYTE def display_image(self, imagedata): self.last_imagedata = imagedata if self.display != None: lines = len(imagedata)//8 for line in range(lines): line_start = line*RNodeInterface.FB_BYTES_PER_LINE line_end = line_start+RNodeInterface.FB_BYTES_PER_LINE line_data = bytes(imagedata[line_start:line_end]) self.write_framebuffer(line, line_data) def write_framebuffer(self, line, line_data): if self.display != None: line_byte = line.to_bytes(1, byteorder="big", signed=False) data = line_byte+line_data escaped_data = KISS.escape(data) kiss_command = bytes([KISS.FEND])+bytes([KISS.CMD_FB_WRITE])+escaped_data+bytes([KISS.FEND]) written = self.write_mux(kiss_command) if written != len(kiss_command): raise OSError("An IO error occurred while writing framebuffer data device") def hard_reset(self): kiss_command = bytes([KISS.FEND, KISS.CMD_RESET, 0xf8, KISS.FEND]) written = self.write_mux(kiss_command) if written != len(kiss_command): raise OSError("An IO error occurred while restarting device") sleep(4.0); def setFrequency(self): c1 = self.frequency >> 24 c2 = self.frequency >> 16 & 0xFF c3 = self.frequency >> 8 & 0xFF c4 = self.frequency & 0xFF data = KISS.escape(bytes([c1])+bytes([c2])+bytes([c3])+bytes([c4])) kiss_command = bytes([KISS.FEND])+bytes([KISS.CMD_FREQUENCY])+data+bytes([KISS.FEND]) written = self.write_mux(kiss_command) if written != len(kiss_command): raise OSError(f"An IO error occurred while configuring frequency for {self}") def setBandwidth(self): c1 = self.bandwidth >> 24 c2 = self.bandwidth >> 16 & 0xFF c3 = self.bandwidth >> 8 & 0xFF c4 = self.bandwidth & 0xFF data = KISS.escape(bytes([c1])+bytes([c2])+bytes([c3])+bytes([c4])) kiss_command = bytes([KISS.FEND])+bytes([KISS.CMD_BANDWIDTH])+data+bytes([KISS.FEND]) written = self.write_mux(kiss_command) if written != len(kiss_command): raise OSError(f"An IO error occurred while configuring bandwidth for {self}") def setTXPower(self): txp = bytes([self.txpower]) kiss_command = bytes([KISS.FEND])+bytes([KISS.CMD_TXPOWER])+txp+bytes([KISS.FEND]) written = self.write_mux(kiss_command) if written != len(kiss_command): raise OSError(f"An IO error occurred while configuring TX power for {self}") def setSpreadingFactor(self): sf = bytes([self.sf]) kiss_command = bytes([KISS.FEND])+bytes([KISS.CMD_SF])+sf+bytes([KISS.FEND]) written = self.write_mux(kiss_command) if written != len(kiss_command): raise OSError(f"An IO error occurred while configuring spreading factor for {self}") def setCodingRate(self): cr = bytes([self.cr]) kiss_command = bytes([KISS.FEND])+bytes([KISS.CMD_CR])+cr+bytes([KISS.FEND]) written = self.write_mux(kiss_command) if written != len(kiss_command): raise OSError(f"An IO error occurred while configuring coding rate for {self}") def setSTALock(self): if self.st_alock != None: at = int(self.st_alock*100) c1 = at >> 8 & 0xFF c2 = at & 0xFF data = KISS.escape(bytes([c1])+bytes([c2])) kiss_command = bytes([KISS.FEND])+bytes([KISS.CMD_ST_ALOCK])+data+bytes([KISS.FEND]) written = self.write_mux(kiss_command) if written != len(kiss_command): raise OSError(f"An IO error occurred while configuring short-term airtime limit for {self}") def setLTALock(self): if self.lt_alock != None: at = int(self.lt_alock*100) c1 = at >> 8 & 0xFF c2 = at & 0xFF data = KISS.escape(bytes([c1])+bytes([c2])) kiss_command = bytes([KISS.FEND])+bytes([KISS.CMD_LT_ALOCK])+data+bytes([KISS.FEND]) written = self.write_mux(kiss_command) if written != len(kiss_command): raise OSError(f"An IO error occurred while configuring long-term airtime limit for {self}") def setRadioState(self, state): self.state = state kiss_command = bytes([KISS.FEND])+bytes([KISS.CMD_RADIO_STATE])+bytes([state])+bytes([KISS.FEND]) written = self.write_mux(kiss_command) if written != len(kiss_command): raise OSError(f"An IO error occurred while configuring radio state for {self}") def validate_firmware(self): if (self.maj_version > RNodeInterface.REQUIRED_FW_VER_MAJ): self.firmware_ok = True else: if (self.maj_version >= RNodeInterface.REQUIRED_FW_VER_MAJ): if (self.min_version >= RNodeInterface.REQUIRED_FW_VER_MIN): self.firmware_ok = True if self.firmware_ok: return RNS.log(f"The firmware version of the connected RNode is {self.maj_version}.{self.min_version}", RNS.LOG_ERROR) RNS.log(f"This version of Reticulum requires at least version {RNodeInterface.REQUIRED_FW_VER_MAJ}.{RNodeInterface.REQUIRED_FW_VER_MIN}", RNS.LOG_ERROR) RNS.log("Please update your RNode firmware with rnodeconf from https://github.com/markqvist/reticulum/") error_description = f"The firmware version of the connected RNode is {self.maj_version}.{self.min_version}. " error_description += f"This version of Reticulum requires at least version {RNodeInterface.REQUIRED_FW_VER_MAJ}.{RNodeInterface.REQUIRED_FW_VER_MIN}. " error_description += "Please update your RNode firmware with rnodeconf from: https://github.com/markqvist/rnodeconfigutil/" self.hw_errors.append({"error": KISS.ERROR_INVALID_FIRMWARE, "description": error_description}) def validateRadioState(self): RNS.log(f"Waiting for radio configuration validation for {self}...", RNS.LOG_VERBOSE) if not self.platform == KISS.PLATFORM_ESP32: sleep(1.00); else: sleep(2.00); self.validcfg = True if (self.r_frequency != None and abs(self.frequency - int(self.r_frequency)) > 100): RNS.log("Frequency mismatch", RNS.LOG_ERROR) self.validcfg = False if (self.bandwidth != self.r_bandwidth): RNS.log("Bandwidth mismatch", RNS.LOG_ERROR) self.validcfg = False if (self.txpower != self.r_txpower): RNS.log("TX power mismatch", RNS.LOG_ERROR) self.validcfg = False if (self.sf != self.r_sf): RNS.log("Spreading factor mismatch", RNS.LOG_ERROR) self.validcfg = False if (self.state != self.r_state): RNS.log("Radio state mismatch", RNS.LOG_ERROR) self.validcfg = False if (self.validcfg): return True else: return False def resetRadioState(self): self.r_frequency = None self.r_bandwidth = None self.r_txpower = None self.r_sf = None self.r_cr = None self.r_state = None def updateBitrate(self): try: self.bitrate = self.r_sf * ( (4.0/self.r_cr) / (math.pow(2,self.r_sf)/(self.r_bandwidth/1000)) ) * 1000 self.bitrate_kbps = round(self.bitrate/1000.0, 2) RNS.log(f"{self} On-air bitrate is now {self.bitrate_kbps} kbps", RNS.LOG_VERBOSE) except: self.bitrate = 0 def processIncoming(self, data): self.rxb += len(data) def af(): self.owner.inbound(data, self) threading.Thread(target=af, daemon=True).start() def processOutgoing(self,data): datalen = len(data) if self.online: if self.interface_ready: if self.flow_control: self.interface_ready = False if data == self.id_callsign: self.first_tx = None else: if self.first_tx == None: self.first_tx = time.time() data = KISS.escape(data) frame = bytes([0xc0])+bytes([0x00])+data+bytes([0xc0]) written = self.write_mux(frame) self.txb += datalen if written != len(frame): raise OSError(f"Serial interface only wrote {written} bytes of {len(data)}") else: self.queue(data) def queue(self, data): self.packet_queue.append(data) def process_queue(self): if len(self.packet_queue) > 0: data = self.packet_queue.pop(0) self.interface_ready = True self.processOutgoing(data) elif len(self.packet_queue) == 0: self.interface_ready = True def readLoop(self): try: in_frame = False escape = False command = KISS.CMD_UNKNOWN data_buffer = b"" command_buffer = b"" last_read_ms = int(time.time()*1000) # TODO: Ensure hotplug support for serial drivers # This should work now with the new time-based # detect polling. while (self.serial != None and self.serial.is_open) or (self.bt_manager != None and self.bt_manager.connected): serial_bytes = self.read_mux() got = len(serial_bytes) if got > 0: self.last_port_io = time.time() for byte in serial_bytes: last_read_ms = int(time.time()*1000) if (in_frame and byte == KISS.FEND and command == KISS.CMD_DATA): in_frame = False self.processIncoming(data_buffer) data_buffer = b"" command_buffer = b"" elif (byte == KISS.FEND): in_frame = True command = KISS.CMD_UNKNOWN data_buffer = b"" command_buffer = b"" elif (in_frame and len(data_buffer) < self.HW_MTU): if (len(data_buffer) == 0 and command == KISS.CMD_UNKNOWN): command = byte elif (command == KISS.CMD_DATA): if (byte == KISS.FESC): escape = True else: if (escape): if (byte == KISS.TFEND): byte = KISS.FEND if (byte == KISS.TFESC): byte = KISS.FESC escape = False data_buffer = data_buffer+bytes([byte]) elif (command == KISS.CMD_FREQUENCY): if (byte == KISS.FESC): escape = True else: if (escape): if (byte == KISS.TFEND): byte = KISS.FEND if (byte == KISS.TFESC): byte = KISS.FESC escape = False command_buffer = command_buffer+bytes([byte]) if (len(command_buffer) == 4): self.r_frequency = command_buffer[0] << 24 | command_buffer[1] << 16 | command_buffer[2] << 8 | command_buffer[3] RNS.log(f"{self} Radio reporting frequency is {self.r_frequency / 1000000.0} MHz", RNS.LOG_DEBUG) self.updateBitrate() elif (command == KISS.CMD_BANDWIDTH): if (byte == KISS.FESC): escape = True else: if (escape): if (byte == KISS.TFEND): byte = KISS.FEND if (byte == KISS.TFESC): byte = KISS.FESC escape = False command_buffer = command_buffer+bytes([byte]) if (len(command_buffer) == 4): self.r_bandwidth = command_buffer[0] << 24 | command_buffer[1] << 16 | command_buffer[2] << 8 | command_buffer[3] RNS.log(f"{self} Radio reporting bandwidth is {self.r_bandwidth / 1000.0} KHz", RNS.LOG_DEBUG) self.updateBitrate() elif (command == KISS.CMD_TXPOWER): self.r_txpower = byte RNS.log(f"{self} Radio reporting TX power is {self.r_txpower} dBm", RNS.LOG_DEBUG) elif (command == KISS.CMD_SF): self.r_sf = byte RNS.log(f"{self} Radio reporting spreading factor is {self.r_sf}", RNS.LOG_DEBUG) self.updateBitrate() elif (command == KISS.CMD_CR): self.r_cr = byte RNS.log(f"{self} Radio reporting coding rate is {self.r_cr}", RNS.LOG_DEBUG) self.updateBitrate() elif (command == KISS.CMD_RADIO_STATE): self.r_state = byte if self.r_state: RNS.log(f"{self} Radio reporting state is online", RNS.LOG_DEBUG) else: RNS.log(f"{self} Radio reporting state is offline", RNS.LOG_DEBUG) elif (command == KISS.CMD_RADIO_LOCK): self.r_lock = byte elif (command == KISS.CMD_FW_VERSION): if (byte == KISS.FESC): escape = True else: if (escape): if (byte == KISS.TFEND): byte = KISS.FEND if (byte == KISS.TFESC): byte = KISS.FESC escape = False command_buffer = command_buffer+bytes([byte]) if (len(command_buffer) == 2): self.maj_version = int(command_buffer[0]) self.min_version = int(command_buffer[1]) self.validate_firmware() elif (command == KISS.CMD_STAT_RX): if (byte == KISS.FESC): escape = True else: if (escape): if (byte == KISS.TFEND): byte = KISS.FEND if (byte == KISS.TFESC): byte = KISS.FESC escape = False command_buffer = command_buffer+bytes([byte]) if (len(command_buffer) == 4): self.r_stat_rx = ord(command_buffer[0]) << 24 | ord(command_buffer[1]) << 16 | ord(command_buffer[2]) << 8 | ord(command_buffer[3]) elif (command == KISS.CMD_STAT_TX): if (byte == KISS.FESC): escape = True else: if (escape): if (byte == KISS.TFEND): byte = KISS.FEND if (byte == KISS.TFESC): byte = KISS.FESC escape = False command_buffer = command_buffer+bytes([byte]) if (len(command_buffer) == 4): self.r_stat_tx = ord(command_buffer[0]) << 24 | ord(command_buffer[1]) << 16 | ord(command_buffer[2]) << 8 | ord(command_buffer[3]) elif (command == KISS.CMD_STAT_RSSI): self.r_stat_rssi = byte-RNodeInterface.RSSI_OFFSET elif (command == KISS.CMD_STAT_SNR): self.r_stat_snr = int.from_bytes(bytes([byte]), byteorder="big", signed=True) * 0.25 try: sfs = self.r_sf-7 snr = self.r_stat_snr q_snr_min = RNodeInterface.Q_SNR_MIN_BASE-sfs*RNodeInterface.Q_SNR_STEP q_snr_max = RNodeInterface.Q_SNR_MAX q_snr_span = q_snr_max-q_snr_min quality = round(((snr-q_snr_min)/(q_snr_span))*100,1) if quality > 100.0: quality = 100.0 if quality < 0.0: quality = 0.0 self.r_stat_q = quality except: pass elif (command == KISS.CMD_ST_ALOCK): if (byte == KISS.FESC): escape = True else: if (escape): if (byte == KISS.TFEND): byte = KISS.FEND if (byte == KISS.TFESC): byte = KISS.FESC escape = False command_buffer = command_buffer+bytes([byte]) if (len(command_buffer) == 2): at = command_buffer[0] << 8 | command_buffer[1] self.r_st_alock = at/100.0 RNS.log(f"{self} Radio reporting short-term airtime limit is {self.r_st_alock}%", RNS.LOG_DEBUG) elif (command == KISS.CMD_LT_ALOCK): if (byte == KISS.FESC): escape = True else: if (escape): if (byte == KISS.TFEND): byte = KISS.FEND if (byte == KISS.TFESC): byte = KISS.FESC escape = False command_buffer = command_buffer+bytes([byte]) if (len(command_buffer) == 2): at = command_buffer[0] << 8 | command_buffer[1] self.r_lt_alock = at/100.0 RNS.log(f"{self} Radio reporting long-term airtime limit is {self.r_lt_alock}%", RNS.LOG_DEBUG) elif (command == KISS.CMD_STAT_CHTM): if (byte == KISS.FESC): escape = True else: if (escape): if (byte == KISS.TFEND): byte = KISS.FEND if (byte == KISS.TFESC): byte = KISS.FESC escape = False command_buffer = command_buffer+bytes([byte]) if (len(command_buffer) == 8): ats = command_buffer[0] << 8 | command_buffer[1] atl = command_buffer[2] << 8 | command_buffer[3] cus = command_buffer[4] << 8 | command_buffer[5] cul = command_buffer[6] << 8 | command_buffer[7] self.r_airtime_short = ats/100.0 self.r_airtime_long = atl/100.0 self.r_channel_load_short = cus/100.0 self.r_channel_load_long = cul/100.0 elif (command == KISS.CMD_STAT_PHYPRM): if (byte == KISS.FESC): escape = True else: if (escape): if (byte == KISS.TFEND): byte = KISS.FEND if (byte == KISS.TFESC): byte = KISS.FESC escape = False command_buffer = command_buffer+bytes([byte]) if (len(command_buffer) == 10): lst = (command_buffer[0] << 8 | command_buffer[1])/1000.0 lsr = command_buffer[2] << 8 | command_buffer[3] prs = command_buffer[4] << 8 | command_buffer[5] prt = command_buffer[6] << 8 | command_buffer[7] cst = command_buffer[8] << 8 | command_buffer[9] if lst != self.r_symbol_time_ms or lsr != self.r_symbol_rate or prs != self.r_preamble_symbols or prt != self.r_premable_time_ms or cst != self.r_csma_slot_time_ms: self.r_symbol_time_ms = lst self.r_symbol_rate = lsr self.r_preamble_symbols = prs self.r_premable_time_ms = prt self.r_csma_slot_time_ms = cst RNS.log(f"{self} Radio reporting symbol time is {round(self.r_symbol_time_ms, 2)}ms (at {self.r_symbol_rate} baud)", RNS.LOG_DEBUG) RNS.log(f"{self} Radio reporting preamble is {self.r_preamble_symbols} symbols ({self.r_premable_time_ms}ms)", RNS.LOG_DEBUG) RNS.log(f"{self} Radio reporting CSMA slot time is {self.r_csma_slot_time_ms}ms", RNS.LOG_DEBUG) elif (command == KISS.CMD_STAT_BAT): if (byte == KISS.FESC): escape = True else: if (escape): if (byte == KISS.TFEND): byte = KISS.FEND if (byte == KISS.TFESC): byte = KISS.FESC escape = False command_buffer = command_buffer+bytes([byte]) if (len(command_buffer) == 2): bat_percent = command_buffer[1] if bat_percent > 100: bat_percent = 100 if bat_percent < 0: bat_percent = 0 self.r_battery_state = command_buffer[0] self.r_battery_percent = bat_percent elif (command == KISS.CMD_RANDOM): self.r_random = byte elif (command == KISS.CMD_PLATFORM): self.platform = byte elif (command == KISS.CMD_MCU): self.mcu = byte elif (command == KISS.CMD_ERROR): if (byte == KISS.ERROR_INITRADIO): RNS.log(f"{self} hardware initialisation error (code {RNS.hexrep(byte)})", RNS.LOG_ERROR) raise OSError("Radio initialisation failure") elif (byte == KISS.ERROR_TXFAILED): RNS.log(f"{self} hardware TX error (code {RNS.hexrep(byte)})", RNS.LOG_ERROR) raise OSError("Hardware transmit failure") elif (byte == KISS.ERROR_MEMORY_LOW): RNS.log(f"{self} hardware error (code {RNS.hexrep(byte)}): Memory exhausted", RNS.LOG_ERROR) self.hw_errors.append({"error": KISS.ERROR_MEMORY_LOW, "description": "Memory exhausted on connected device"}) elif (byte == KISS.ERROR_MODEM_TIMEOUT): RNS.log(f"{self} hardware error (code {RNS.hexrep(byte)}): Modem communication timed out", RNS.LOG_ERROR) self.hw_errors.append({"error": KISS.ERROR_MODEM_TIMEOUT, "description": "Modem communication timed out on connected device"}) else: RNS.log(f"{self} hardware error (code {RNS.hexrep(byte)})", RNS.LOG_ERROR) raise OSError("Unknown hardware failure") elif (command == KISS.CMD_RESET): if (byte == 0xF8): if self.platform == KISS.PLATFORM_ESP32: if self.online: RNS.log("Detected reset while device was online, reinitialising device...", RNS.LOG_ERROR) raise OSError("ESP32 reset") elif (command == KISS.CMD_READY): self.process_queue() elif (command == KISS.CMD_DETECT): if byte == KISS.DETECT_RESP: self.detected = True else: self.detected = False if got == 0: time_since_last = int(time.time()*1000) - last_read_ms if len(data_buffer) > 0 and time_since_last > self.timeout: RNS.log(f"{self} serial read timeout in command {command}", RNS.LOG_WARNING) data_buffer = b"" in_frame = False command = KISS.CMD_UNKNOWN escape = False if self.id_interval != None and self.id_callsign != None: if self.first_tx != None: if time.time() > self.first_tx + self.id_interval: RNS.log(f"Interface {self} is transmitting beacon data: {self.id_callsign.decode('utf-8')}", RNS.LOG_DEBUG) self.processOutgoing(self.id_callsign) if (time.time() - self.last_port_io > self.port_io_timeout): self.detect() if (time.time() - self.last_port_io > self.port_io_timeout*3): raise OSError(f"Connected port for {self} became unresponsive") if self.bt_manager != None: sleep(0.08) except Exception as e: self.online = False RNS.log(f"A serial port occurred, the contained exception was: {e}", RNS.LOG_ERROR) RNS.log(f"The interface {self} experienced an unrecoverable error and is now offline.", RNS.LOG_ERROR) if RNS.Reticulum.panic_on_interface_error: RNS.panic() RNS.log("Reticulum will attempt to reconnect the interface periodically.", RNS.LOG_ERROR) self.online = False if self.serial != None: self.serial.close() if self.bt_manager != None: self.bt_manager.close() if not self.detached: self.reconnect_port() def reconnect_port(self): if self.reconnect_lock.locked(): RNS.log("Dropping superflous reconnect port job") return with self.reconnect_lock: while not self.online and len(self.hw_errors) == 0: try: time.sleep(self.reconnect_w) if self.serial != None and self.port != None: RNS.log(f"Attempting to reconnect serial port {self.port} for {self}...", RNS.LOG_EXTREME) if self.bt_manager != None: RNS.log(f"Attempting to reconnect Bluetooth device for {self}...", RNS.LOG_EXTREME) self.open_port() if hasattr(self, "serial") and self.serial != None and self.serial.is_open: self.configure_device() if self.online: if self.last_imagedata != None: self.display_image(self.last_imagedata) self.enable_external_framebuffer() elif hasattr(self, "bt_manager") and self.bt_manager != None and self.bt_manager.connected: self.configure_device() if self.online: if self.last_imagedata != None: self.display_image(self.last_imagedata) self.enable_external_framebuffer() except Exception as e: RNS.log(f"Error while reconnecting RNode, the contained exception was: {e}", RNS.LOG_ERROR) if self.online: RNS.log(f"Reconnected serial port for {self}") def detach(self): self.detached = True self.disable_external_framebuffer() self.setRadioState(KISS.RADIO_STATE_OFF) self.leave() if self.use_ble: self.ble.close() def should_ingress_limit(self): return False def get_battery_state(self): return self.r_battery_state def get_battery_state_string(self): if self.r_battery_state == RNodeInterface.BATTERY_STATE_CHARGED: return "charged" elif self.r_battery_state == RNodeInterface.BATTERY_STATE_CHARGING: return "charging" elif self.r_battery_state == RNodeInterface.BATTERY_STATE_DISCHARGING: return "discharging" else: return "unknown" def get_battery_percent(self): return self.r_battery_percent def ble_receive(self, data): with self.ble_rx_lock: self.ble_rx_queue += data def ble_waiting(self): return len(self.ble_tx_queue) > 0 def get_ble_waiting(self, n): with self.ble_tx_lock: data = self.ble_tx_queue[:n] self.ble_tx_queue = self.ble_tx_queue[n:] return data def __str__(self): return f"RNodeInterface[{self.name}]" class BLEConnection(BluetoothDispatcher): UART_SERVICE_UUID = "6e400001-b5a3-f393-e0a9-e50e24dcca9e" UART_RX_CHAR_UUID = "6e400002-b5a3-f393-e0a9-e50e24dcca9e" UART_TX_CHAR_UUID = "6e400003-b5a3-f393-e0a9-e50e24dcca9e" MAX_GATT_ATTR_LEN = 512 BASE_MTU = 20 TARGET_MTU = 512 MTU_TIMEOUT = 4.0 CONNECT_TIMEOUT = 7.0 RECONNECT_WAIT = 1.0 @property def is_open(self): return self.connected @property def in_waiting(self): return len(self.owner.ble_rx_queue) > 0 def write(self, data_bytes): with self.owner.ble_tx_lock: self.owner.ble_tx_queue += data_bytes return len(data_bytes) def read(self): with self.owner.ble_rx_lock: data = self.owner.ble_rx_queue self.owner.ble_rx_queue = b"" return data def close(self): try: if self.connected: RNS.log(f"Disconnecting BLE device from {self.owner}", RNS.LOG_DEBUG) # RNS.log("Waiting for BLE write buffer to empty...") timeout = time.time() + 10 while self.owner.ble_waiting() and self.write_thread != None and time.time() < timeout: time.sleep(0.1) # if time.time() > timeout: # RNS.log("Writing timed out") # else: # RNS.log("Writing concluded") self.rx_char = None self.tx_char = None self.mtu = BLEConnection.BASE_MTU self.mtu_requested_time = None if self.write_thread != None: # RNS.log("Waiting for write thread to finish...") while self.write_thread != None: time.sleep(0.1) # RNS.log("Writing finished, closing GATT connection") self.close_gatt() with self.owner.ble_rx_lock: self.owner.ble_rx_queue = b"" with self.owner.ble_tx_lock: self.owner.ble_tx_queue = b"" self.connected = False self.ble_device = None except Exception as e: RNS.log("An error occurred while closing BLE connection for {self.owner}: {e}", RNS.LOG_ERROR) RNS.trace_exception(e) def __init__(self, owner=None, target_name=None, target_bt_addr=None): super().__init__() self.owner = owner self.target_name = target_name self.target_bt_addr = target_bt_addr self.connect_timeout = BLEConnection.CONNECT_TIMEOUT self.ble_device = None self.rx_char = None self.tx_char = None self.connected = False self.was_connected = False self.connected_time = None self.mtu_requested_time = None self.running = False self.should_run = False self.connect_job_running = False self.write_thread = None self.mtu = BLEConnection.BASE_MTU self.target_mtu = BLEConnection.TARGET_MTU self.bt_manager = AndroidBluetoothManager(owner=self) self.should_run = True self.connection_thread = threading.Thread(target=self.connection_job, daemon=True).start() def write_loop(self): try: while self.connected and self.rx_char != None: if self.owner.ble_waiting(): data = self.owner.get_ble_waiting(self.mtu) self.write_characteristic(self.rx_char, data) else: time.sleep(0.1) except Exception as e: RNS.log("An error occurred in {self} write loop: {e}", RNS.LOG_ERROR) RNS.trace_exception(e) self.write_thread = None def connection_job(self): while self.should_run: if self.bt_manager.bt_enabled(): if self.ble_device == None: self.ble_device = self.find_target_device() if self.ble_device != None: if not self.connected: if self.was_connected: RNS.log(f"Throttling BLE reconnect for {BLEConnection.RECONNECT_WAIT} seconds", RNS.LOG_DEBUG) time.sleep(BLEConnection.RECONNECT_WAIT) self.connect_device() else: if self.connected: RNS.log("Bluetooth was disabled, closing active BLE device connection", RNS.LOG_ERROR) self.close() time.sleep(2) def connect_device(self): if self.ble_device != None and self.bt_manager.bt_enabled(): RNS.log(f"Trying to connect BLE device {self.ble_device.getName()} / {self.ble_device.getAddress()} for {self.owner}...", RNS.LOG_DEBUG) self.mtu = BLEConnection.BASE_MTU self.connect_by_device_address(self.ble_device.getAddress()) end = time.time() + BLEConnection.CONNECT_TIMEOUT while time.time() < end and not self.connected: time.sleep(0.25) if self.connected: self.owner.port = f"ble://{self.ble_device.getAddress()}" self.write_thread = threading.Thread(target=self.write_loop, daemon=True) self.write_thread.start() else: RNS.log(f"BLE device connection timed out for {self.owner}", RNS.LOG_DEBUG) if self.mtu_requested_time: RNS.log("MTU update timeout, tearing down connection") self.owner.hw_errors.append({"error": KISS.ERROR_INVALID_BLE_MTU, "description": "The Bluetooth Low Energy transfer MTU could not be configured for the connected device, and communication has failed. Restart Reticulum and any connected applications to retry connecting."}) self.close() self.should_run = False self.close_gatt() self.connect_job_running = False def device_disconnected(self): RNS.log(f"BLE device for {self.owner} disconnected", RNS.LOG_NOTICE) self.connected = False self.ble_device = None self.close_gatt() def find_target_device(self): found_device = None potential_devices = self.bt_manager.get_paired_devices() if self.target_bt_addr != None: for device in potential_devices: if (device.getType() == AndroidBluetoothManager.DEVICE_TYPE_LE) or (device.getType() == AndroidBluetoothManager.DEVICE_TYPE_DUAL): if str(device.getAddress()).replace(":", "").lower() == str(self.target_bt_addr).replace(":", "").lower(): found_device = device break if not found_device and self.target_name != None: for device in potential_devices: if (device.getType() == AndroidBluetoothManager.DEVICE_TYPE_LE) or (device.getType() == AndroidBluetoothManager.DEVICE_TYPE_DUAL): if device.getName().lower() == self.target_name.lower(): found_device = device break if not found_device: for device in potential_devices: if (device.getType() == AndroidBluetoothManager.DEVICE_TYPE_LE) or (device.getType() == AndroidBluetoothManager.DEVICE_TYPE_DUAL): if device.getName().startswith("RNode "): found_device = device break return found_device def on_connection_state_change(self, status, state): if status == GATT_SUCCESS and state: self.discover_services() else: self.device_disconnected() def on_services(self, status, services): if status == GATT_SUCCESS: self.rx_char = services.search(BLEConnection.UART_RX_CHAR_UUID) if self.rx_char is not None: self.tx_char = services.search(BLEConnection.UART_TX_CHAR_UUID) if self.tx_char is not None: if self.enable_notifications(self.tx_char): RNS.log("Enabled notifications for BLE TX characteristic", RNS.LOG_DEBUG) RNS.log(f"Requesting BLE connection MTU update to {self.target_mtu}", RNS.LOG_DEBUG) self.mtu_requested_time = time.time() self.request_mtu(self.target_mtu) else: RNS.log("Could not enable notifications for BLE TX characteristic", RNS.LOG_ERROR) else: RNS.log("BLE device service discovery failure", RNS.LOG_ERROR) def on_mtu_changed(self, mtu, status): if status == GATT_SUCCESS: self.mtu = min(mtu-5, BLEConnection.MAX_GATT_ATTR_LEN) RNS.log(f"BLE MTU updated to {self.mtu} for {self.owner}", RNS.LOG_DEBUG) self.connected = True self.was_connected = True self.connected_time = time.time() self.mtu_requested_time = None else: RNS.log(f"MTU update request did not succeed, mtu={mtu}, status={status}", RNS.LOG_ERROR) def on_characteristic_changed(self, characteristic): if characteristic.getUuid().toString() == BLEConnection.UART_TX_CHAR_UUID: recvd = bytes(characteristic.getValue()) self.owner.ble_receive(recvd)