# MIT License # # Copyright (c) 2016-2023 Mark Qvist / unsigned.io # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from .Interface import Interface from time import sleep import sys import threading import time import math import RNS class KISS(): FEND = 0xC0 FESC = 0xDB TFEND = 0xDC TFESC = 0xDD CMD_UNKNOWN = 0xFE CMD_DATA = 0x00 CMD_FREQUENCY = 0x01 CMD_BANDWIDTH = 0x02 CMD_TXPOWER = 0x03 CMD_SF = 0x04 CMD_CR = 0x05 CMD_RADIO_STATE = 0x06 CMD_RADIO_LOCK = 0x07 CMD_ST_ALOCK = 0x0B CMD_LT_ALOCK = 0x0C CMD_DETECT = 0x08 CMD_LEAVE = 0x0A CMD_READY = 0x0F CMD_STAT_RX = 0x21 CMD_STAT_TX = 0x22 CMD_STAT_RSSI = 0x23 CMD_STAT_SNR = 0x24 CMD_STAT_CHTM = 0x25 CMD_STAT_PHYPRM = 0x26 CMD_STAT_BAT = 0x27 CMD_BLINK = 0x30 CMD_RANDOM = 0x40 CMD_FB_EXT = 0x41 CMD_FB_READ = 0x42 CMD_FB_WRITE = 0x43 CMD_BT_CTRL = 0x46 CMD_PLATFORM = 0x48 CMD_MCU = 0x49 CMD_FW_VERSION = 0x50 CMD_ROM_READ = 0x51 CMD_RESET = 0x55 DETECT_REQ = 0x73 DETECT_RESP = 0x46 RADIO_STATE_OFF = 0x00 RADIO_STATE_ON = 0x01 RADIO_STATE_ASK = 0xFF CMD_ERROR = 0x90 ERROR_INITRADIO = 0x01 ERROR_TXFAILED = 0x02 ERROR_EEPROM_LOCKED = 0x03 ERROR_QUEUE_FULL = 0x04 ERROR_MEMORY_LOW = 0x05 ERROR_MODEM_TIMEOUT = 0x06 PLATFORM_AVR = 0x90 PLATFORM_ESP32 = 0x80 PLATFORM_NRF52 = 0x70 @staticmethod def escape(data): data = data.replace(bytes([0xdb]), bytes([0xdb, 0xdd])) data = data.replace(bytes([0xc0]), bytes([0xdb, 0xdc])) return data class RNodeInterface(Interface): MAX_CHUNK = 32768 FREQ_MIN = 137000000 FREQ_MAX = 3000000000 RSSI_OFFSET = 157 CALLSIGN_MAX_LEN = 32 REQUIRED_FW_VER_MAJ = 1 REQUIRED_FW_VER_MIN = 52 RECONNECT_WAIT = 5 Q_SNR_MIN_BASE = -9 Q_SNR_MAX = 6 Q_SNR_STEP = 2 BATTERY_STATE_UNKNOWN = 0x00 BATTERY_STATE_DISCHARGING = 0x01 BATTERY_STATE_CHARGING = 0x02 BATTERY_STATE_CHARGED = 0x03 def __init__(self, owner, name, port, frequency = None, bandwidth = None, txpower = None, sf = None, cr = None, flow_control = False, id_interval = None, id_callsign = None, st_alock = None, lt_alock = None, ble_addr = None, ble_name = None, force_ble=False): if RNS.vendor.platformutils.is_android(): raise SystemError("Invalid interface type. The Android-specific RNode interface must be used on Android") import importlib if importlib.util.find_spec('serial') != None: import serial else: RNS.log("Using the RNode interface requires a serial communication module to be installed.", RNS.LOG_CRITICAL) RNS.log("You can install one with the command: python3 -m pip install pyserial", RNS.LOG_CRITICAL) RNS.panic() super().__init__() self.HW_MTU = 508 self.pyserial = serial self.serial = None self.owner = owner self.name = name self.port = port self.speed = 115200 self.databits = 8 self.stopbits = 1 self.timeout = 100 self.online = False self.detached = False self.reconnecting= False self.use_ble = False self.ble_name = ble_name self.ble_addr = ble_addr self.ble = None self.ble_rx_lock = threading.Lock() self.ble_tx_lock = threading.Lock() self.ble_rx_queue= b"" self.ble_tx_queue= b"" self.frequency = frequency self.bandwidth = bandwidth self.txpower = txpower self.sf = sf self.cr = cr self.state = KISS.RADIO_STATE_OFF self.bitrate = 0 self.st_alock = st_alock self.lt_alock = lt_alock self.platform = None self.display = None self.mcu = None self.detected = False self.firmware_ok = False self.maj_version = 0 self.min_version = 0 self.last_id = 0 self.first_tx = None self.reconnect_w = RNodeInterface.RECONNECT_WAIT self.r_frequency = None self.r_bandwidth = None self.r_txpower = None self.r_sf = None self.r_cr = None self.r_state = None self.r_lock = None self.r_stat_rx = None self.r_stat_tx = None self.r_stat_rssi = None self.r_stat_snr = None self.r_st_alock = None self.r_lt_alock = None self.r_random = None self.r_airtime_short = 0.0 self.r_airtime_long = 0.0 self.r_channel_load_short = 0.0 self.r_channel_load_long = 0.0 self.r_symbol_time_ms = None self.r_symbol_rate = None self.r_preamble_symbols = None self.r_premable_time_ms = None self.r_battery_state = RNodeInterface.BATTERY_STATE_UNKNOWN self.r_battery_percent = 0 self.packet_queue = [] self.flow_control = flow_control self.interface_ready = False self.announce_rate_target = None if force_ble or self.ble_addr != None or self.ble_name != None: self.use_ble = True self.validcfg = True if (self.frequency < RNodeInterface.FREQ_MIN or self.frequency > RNodeInterface.FREQ_MAX): RNS.log(f"Invalid frequency configured for {self}", RNS.LOG_ERROR) self.validcfg = False if (self.txpower < 0 or self.txpower > 22): RNS.log(f"Invalid TX power configured for {self}", RNS.LOG_ERROR) self.validcfg = False if (self.bandwidth < 7800 or self.bandwidth > 1625000): RNS.log(f"Invalid bandwidth configured for {self}", RNS.LOG_ERROR) self.validcfg = False if (self.sf < 5 or self.sf > 12): RNS.log(f"Invalid spreading factor configured for {self}", RNS.LOG_ERROR) self.validcfg = False if (self.cr < 5 or self.cr > 8): RNS.log(f"Invalid coding rate configured for {self}", RNS.LOG_ERROR) self.validcfg = False if (self.st_alock and (self.st_alock < 0.0 or self.st_alock > 100.0)): RNS.log(f"Invalid short-term airtime limit configured for {self}", RNS.LOG_ERROR) self.validcfg = False if (self.lt_alock and (self.lt_alock < 0.0 or self.lt_alock > 100.0)): RNS.log(f"Invalid long-term airtime limit configured for {self}", RNS.LOG_ERROR) self.validcfg = False if id_interval != None and id_callsign != None: if (len(id_callsign.encode("utf-8")) <= RNodeInterface.CALLSIGN_MAX_LEN): self.should_id = True self.id_callsign = id_callsign.encode("utf-8") self.id_interval = id_interval else: RNS.log(f"The encoded ID callsign for {self} exceeds the max length of {RNodeInterface.CALLSIGN_MAX_LEN} bytes.", RNS.LOG_ERROR) self.validcfg = False else: self.id_interval = None self.id_callsign = None if (not self.validcfg): raise ValueError(f"The configuration for {self} contains errors, interface is offline") try: self.open_port() if self.serial.is_open: self.configure_device() else: raise OSError("Could not open serial port") except Exception as e: RNS.log(f"Could not open serial port for interface {self}", RNS.LOG_ERROR) RNS.log(f"The contained exception was: {e}", RNS.LOG_ERROR) RNS.log("Reticulum will attempt to bring up this interface periodically", RNS.LOG_ERROR) if not self.detached and not self.reconnecting: thread = threading.Thread(target=self.reconnect_port) thread.daemon = True thread.start() def open_port(self): if not self.use_ble: RNS.log(f"Opening serial port {self.port}...") self.serial = self.pyserial.Serial( port = self.port, baudrate = self.speed, bytesize = self.databits, parity = self.pyserial.PARITY_NONE, stopbits = self.stopbits, xonxoff = False, rtscts = False, timeout = 0, inter_byte_timeout = None, write_timeout = None, dsrdtr = False, ) else: RNS.log(f"Opening BLE connection for {self}...") if self.ble != None and self.ble.running == False: self.ble.close() self.ble.cleanup() self.ble = None if self.ble == None: self.ble = BLEConnection(owner=self, target_name=self.ble_name, target_bt_addr=self.ble_addr) self.serial = self.ble open_time = time.time() while not self.ble.connected and time.time() < open_time + self.ble.CONNECT_TIMEOUT: time.sleep(1) def reset_radio_state(self): self.r_frequency = None self.r_bandwidth = None self.r_txpower = None self.r_sf = None self.r_cr = None self.r_state = None self.r_lock = None self.detected = False def configure_device(self): self.reset_radio_state() sleep(2.0) thread = threading.Thread(target=self.readLoop) thread.daemon = True thread.start() self.detect() if not self.use_ble: sleep(0.2) else: ble_detect_timeout = 5 detect_time = time.time() while not self.detected and time.time() < detect_time + ble_detect_timeout: time.sleep(0.1) if self.detected: detect_time = RNS.prettytime(time.time()-detect_time) else: RNS.log(f"RNode detect timed out over {self.port}", RNS.LOG_ERROR) if not self.detected: RNS.log(f"Could not detect device for {self}", RNS.LOG_ERROR) self.serial.close() else: if self.platform == KISS.PLATFORM_ESP32 or self.platform == KISS.PLATFORM_NRF52: self.display = True RNS.log(f"Serial port {self.port} is now open") RNS.log("Configuring RNode interface...", RNS.LOG_VERBOSE) self.initRadio() if (self.validateRadioState()): self.interface_ready = True RNS.log(f"{self} is configured and powered up") sleep(0.3) self.online = True else: RNS.log(f"After configuring {self}, the reported radio parameters did not match your configuration.", RNS.LOG_ERROR) RNS.log("Make sure that your hardware actually supports the parameters specified in the configuration", RNS.LOG_ERROR) RNS.log("Aborting RNode startup", RNS.LOG_ERROR) self.serial.close() def initRadio(self): self.setFrequency() self.setBandwidth() self.setTXPower() self.setSpreadingFactor() self.setCodingRate() self.setSTALock() self.setLTALock() self.setRadioState(KISS.RADIO_STATE_ON) if self.use_ble: time.sleep(2) def detect(self): kiss_command = bytes([KISS.FEND, KISS.CMD_DETECT, KISS.DETECT_REQ, KISS.FEND, KISS.CMD_FW_VERSION, 0x00, KISS.FEND, KISS.CMD_PLATFORM, 0x00, KISS.FEND, KISS.CMD_MCU, 0x00, KISS.FEND]) written = self.serial.write(kiss_command) if written != len(kiss_command): raise OSError(f"An IO error occurred while detecting hardware for {self}") def leave(self): kiss_command = bytes([KISS.FEND, KISS.CMD_LEAVE, 0xFF, KISS.FEND]) written = self.serial.write(kiss_command) if written != len(kiss_command): raise OSError("An IO error occurred while sending host left command to device") def enable_external_framebuffer(self): if self.display != None: kiss_command = bytes([KISS.FEND, KISS.CMD_FB_EXT, 0x01, KISS.FEND]) written = self.serial.write(kiss_command) if written != len(kiss_command): raise OSError("An IO error occurred while enabling external framebuffer on device") def disable_external_framebuffer(self): if self.display != None: kiss_command = bytes([KISS.FEND, KISS.CMD_FB_EXT, 0x00, KISS.FEND]) written = self.serial.write(kiss_command) if written != len(kiss_command): raise OSError("An IO error occurred while disabling external framebuffer on device") FB_PIXEL_WIDTH = 64 FB_BITS_PER_PIXEL = 1 FB_PIXELS_PER_BYTE = 8//FB_BITS_PER_PIXEL FB_BYTES_PER_LINE = FB_PIXEL_WIDTH//FB_PIXELS_PER_BYTE def display_image(self, imagedata): if self.display != None: lines = len(imagedata)//8 for line in range(lines): line_start = line*RNodeInterface.FB_BYTES_PER_LINE line_end = line_start+RNodeInterface.FB_BYTES_PER_LINE line_data = bytes(imagedata[line_start:line_end]) self.write_framebuffer(line, line_data) def write_framebuffer(self, line, line_data): if self.display != None: line_byte = line.to_bytes(1, byteorder="big", signed=False) data = line_byte+line_data escaped_data = KISS.escape(data) kiss_command = bytes([KISS.FEND])+bytes([KISS.CMD_FB_WRITE])+escaped_data+bytes([KISS.FEND]) written = self.serial.write(kiss_command) if written != len(kiss_command): raise OSError("An IO error occurred while writing framebuffer data device") def hard_reset(self): kiss_command = bytes([KISS.FEND, KISS.CMD_RESET, 0xf8, KISS.FEND]) written = self.serial.write(kiss_command) if written != len(kiss_command): raise OSError("An IO error occurred while restarting device") sleep(2.25); def setFrequency(self): c1 = self.frequency >> 24 c2 = self.frequency >> 16 & 0xFF c3 = self.frequency >> 8 & 0xFF c4 = self.frequency & 0xFF data = KISS.escape(bytes([c1])+bytes([c2])+bytes([c3])+bytes([c4])) kiss_command = bytes([KISS.FEND])+bytes([KISS.CMD_FREQUENCY])+data+bytes([KISS.FEND]) written = self.serial.write(kiss_command) if written != len(kiss_command): raise OSError(f"An IO error occurred while configuring frequency for {self}") def setBandwidth(self): c1 = self.bandwidth >> 24 c2 = self.bandwidth >> 16 & 0xFF c3 = self.bandwidth >> 8 & 0xFF c4 = self.bandwidth & 0xFF data = KISS.escape(bytes([c1])+bytes([c2])+bytes([c3])+bytes([c4])) kiss_command = bytes([KISS.FEND])+bytes([KISS.CMD_BANDWIDTH])+data+bytes([KISS.FEND]) written = self.serial.write(kiss_command) if written != len(kiss_command): raise OSError(f"An IO error occurred while configuring bandwidth for {self}") def setTXPower(self): txp = bytes([self.txpower]) kiss_command = bytes([KISS.FEND])+bytes([KISS.CMD_TXPOWER])+txp+bytes([KISS.FEND]) written = self.serial.write(kiss_command) if written != len(kiss_command): raise OSError(f"An IO error occurred while configuring TX power for {self}") def setSpreadingFactor(self): sf = bytes([self.sf]) kiss_command = bytes([KISS.FEND])+bytes([KISS.CMD_SF])+sf+bytes([KISS.FEND]) written = self.serial.write(kiss_command) if written != len(kiss_command): raise OSError(f"An IO error occurred while configuring spreading factor for {self}") def setCodingRate(self): cr = bytes([self.cr]) kiss_command = bytes([KISS.FEND])+bytes([KISS.CMD_CR])+cr+bytes([KISS.FEND]) written = self.serial.write(kiss_command) if written != len(kiss_command): raise OSError(f"An IO error occurred while configuring coding rate for {self}") def setSTALock(self): if self.st_alock != None: at = int(self.st_alock*100) c1 = at >> 8 & 0xFF c2 = at & 0xFF data = KISS.escape(bytes([c1])+bytes([c2])) kiss_command = bytes([KISS.FEND])+bytes([KISS.CMD_ST_ALOCK])+data+bytes([KISS.FEND]) written = self.serial.write(kiss_command) if written != len(kiss_command): raise OSError(f"An IO error occurred while configuring short-term airtime limit for {self}") def setLTALock(self): if self.lt_alock != None: at = int(self.lt_alock*100) c1 = at >> 8 & 0xFF c2 = at & 0xFF data = KISS.escape(bytes([c1])+bytes([c2])) kiss_command = bytes([KISS.FEND])+bytes([KISS.CMD_LT_ALOCK])+data+bytes([KISS.FEND]) written = self.serial.write(kiss_command) if written != len(kiss_command): raise OSError(f"An IO error occurred while configuring long-term airtime limit for {self}") def setRadioState(self, state): self.state = state kiss_command = bytes([KISS.FEND])+bytes([KISS.CMD_RADIO_STATE])+bytes([state])+bytes([KISS.FEND]) written = self.serial.write(kiss_command) if written != len(kiss_command): raise OSError(f"An IO error occurred while configuring radio state for {self}") def validate_firmware(self): if (self.maj_version > RNodeInterface.REQUIRED_FW_VER_MAJ): self.firmware_ok = True else: if (self.maj_version >= RNodeInterface.REQUIRED_FW_VER_MAJ): if (self.min_version >= RNodeInterface.REQUIRED_FW_VER_MIN): self.firmware_ok = True if self.firmware_ok: return RNS.log(f"The firmware version of the connected RNode is {self.maj_version}.{self.min_version}", RNS.LOG_ERROR) RNS.log(f"This version of Reticulum requires at least version {RNodeInterface.REQUIRED_FW_VER_MAJ}.{RNodeInterface.REQUIRED_FW_VER_MIN}", RNS.LOG_ERROR) RNS.log("Please update your RNode firmware with rnodeconf from https://github.com/markqvist/rnodeconfigutil/") RNS.panic() def validateRadioState(self): RNS.log(f"Waiting for radio configuration validation for {self}...", RNS.LOG_VERBOSE) if self.use_ble: sleep(1.00) else: sleep(0.25) if self.use_ble and self.ble != None and self.ble.device_disappeared: RNS.log(f"Device disappeared during radio state validation for {self}", RNS.LOG_ERROR) return False self.validcfg = True if (self.r_frequency != None and abs(self.frequency - int(self.r_frequency)) > 100): RNS.log("Frequency mismatch", RNS.LOG_ERROR) self.validcfg = False if (self.bandwidth != self.r_bandwidth): RNS.log("Bandwidth mismatch", RNS.LOG_ERROR) self.validcfg = False if (self.txpower != self.r_txpower): RNS.log("TX power mismatch", RNS.LOG_ERROR) self.validcfg = False if (self.sf != self.r_sf): RNS.log("Spreading factor mismatch", RNS.LOG_ERROR) self.validcfg = False if (self.state != self.r_state): RNS.log("Radio state mismatch", RNS.LOG_ERROR) self.validcfg = False if (self.validcfg): return True else: return False def updateBitrate(self): try: self.bitrate = self.r_sf * ( (4.0/self.r_cr) / (math.pow(2,self.r_sf)/(self.r_bandwidth/1000)) ) * 1000 self.bitrate_kbps = round(self.bitrate/1000.0, 2) RNS.log(f"{self} On-air bitrate is now {self.bitrate_kbps} kbps", RNS.LOG_VERBOSE) except: self.bitrate = 0 def processIncoming(self, data): self.rxb += len(data) self.owner.inbound(data, self) self.r_stat_rssi = None self.r_stat_snr = None def processOutgoing(self,data): datalen = len(data) if self.online: if self.interface_ready: if self.flow_control: self.interface_ready = False if data == self.id_callsign: self.first_tx = None else: if self.first_tx == None: self.first_tx = time.time() data = KISS.escape(data) frame = bytes([0xc0])+bytes([0x00])+data+bytes([0xc0]) written = self.serial.write(frame) self.txb += datalen if written != len(frame): raise OSError(f"Serial interface only wrote {written} bytes of {len(data)}") else: self.queue(data) def queue(self, data): self.packet_queue.append(data) def process_queue(self): if len(self.packet_queue) > 0: data = self.packet_queue.pop(0) self.interface_ready = True self.processOutgoing(data) elif len(self.packet_queue) == 0: self.interface_ready = True def readLoop(self): try: in_frame = False escape = False command = KISS.CMD_UNKNOWN data_buffer = b"" command_buffer = b"" last_read_ms = int(time.time()*1000) while self.serial.is_open: if self.serial.in_waiting: byte = ord(self.serial.read(1)) last_read_ms = int(time.time()*1000) if (in_frame and byte == KISS.FEND and command == KISS.CMD_DATA): in_frame = False self.processIncoming(data_buffer) data_buffer = b"" command_buffer = b"" elif (byte == KISS.FEND): in_frame = True command = KISS.CMD_UNKNOWN data_buffer = b"" command_buffer = b"" elif (in_frame and len(data_buffer) < self.HW_MTU): if (len(data_buffer) == 0 and command == KISS.CMD_UNKNOWN): command = byte elif (command == KISS.CMD_DATA): if (byte == KISS.FESC): escape = True else: if (escape): if (byte == KISS.TFEND): byte = KISS.FEND if (byte == KISS.TFESC): byte = KISS.FESC escape = False data_buffer = data_buffer+bytes([byte]) elif (command == KISS.CMD_FREQUENCY): if (byte == KISS.FESC): escape = True else: if (escape): if (byte == KISS.TFEND): byte = KISS.FEND if (byte == KISS.TFESC): byte = KISS.FESC escape = False command_buffer = command_buffer+bytes([byte]) if (len(command_buffer) == 4): self.r_frequency = command_buffer[0] << 24 | command_buffer[1] << 16 | command_buffer[2] << 8 | command_buffer[3] RNS.log(f"{self} Radio reporting frequency is {self.r_frequency / 1000000.0} MHz", RNS.LOG_DEBUG) self.updateBitrate() elif (command == KISS.CMD_BANDWIDTH): if (byte == KISS.FESC): escape = True else: if (escape): if (byte == KISS.TFEND): byte = KISS.FEND if (byte == KISS.TFESC): byte = KISS.FESC escape = False command_buffer = command_buffer+bytes([byte]) if (len(command_buffer) == 4): self.r_bandwidth = command_buffer[0] << 24 | command_buffer[1] << 16 | command_buffer[2] << 8 | command_buffer[3] RNS.log(f"{self} Radio reporting bandwidth is {self.r_bandwidth / 1000.0} KHz", RNS.LOG_DEBUG) self.updateBitrate() elif (command == KISS.CMD_TXPOWER): self.r_txpower = byte RNS.log(f"{self} Radio reporting TX power is {self.r_txpower} dBm", RNS.LOG_DEBUG) elif (command == KISS.CMD_SF): self.r_sf = byte RNS.log(f"{self} Radio reporting spreading factor is {self.r_sf}", RNS.LOG_DEBUG) self.updateBitrate() elif (command == KISS.CMD_CR): self.r_cr = byte RNS.log(f"{self} Radio reporting coding rate is {self.r_cr}", RNS.LOG_DEBUG) self.updateBitrate() elif (command == KISS.CMD_RADIO_STATE): self.r_state = byte if self.r_state: pass else: RNS.log(f"{self} Radio reporting state is offline", RNS.LOG_DEBUG) elif (command == KISS.CMD_RADIO_LOCK): self.r_lock = byte elif (command == KISS.CMD_FW_VERSION): if (byte == KISS.FESC): escape = True else: if (escape): if (byte == KISS.TFEND): byte = KISS.FEND if (byte == KISS.TFESC): byte = KISS.FESC escape = False command_buffer = command_buffer+bytes([byte]) if (len(command_buffer) == 2): self.maj_version = int(command_buffer[0]) self.min_version = int(command_buffer[1]) self.validate_firmware() elif (command == KISS.CMD_STAT_RX): if (byte == KISS.FESC): escape = True else: if (escape): if (byte == KISS.TFEND): byte = KISS.FEND if (byte == KISS.TFESC): byte = KISS.FESC escape = False command_buffer = command_buffer+bytes([byte]) if (len(command_buffer) == 4): self.r_stat_rx = ord(command_buffer[0]) << 24 | ord(command_buffer[1]) << 16 | ord(command_buffer[2]) << 8 | ord(command_buffer[3]) elif (command == KISS.CMD_STAT_TX): if (byte == KISS.FESC): escape = True else: if (escape): if (byte == KISS.TFEND): byte = KISS.FEND if (byte == KISS.TFESC): byte = KISS.FESC escape = False command_buffer = command_buffer+bytes([byte]) if (len(command_buffer) == 4): self.r_stat_tx = ord(command_buffer[0]) << 24 | ord(command_buffer[1]) << 16 | ord(command_buffer[2]) << 8 | ord(command_buffer[3]) elif (command == KISS.CMD_STAT_RSSI): self.r_stat_rssi = byte-RNodeInterface.RSSI_OFFSET elif (command == KISS.CMD_STAT_SNR): self.r_stat_snr = int.from_bytes(bytes([byte]), byteorder="big", signed=True) * 0.25 try: sfs = self.r_sf-7 snr = self.r_stat_snr q_snr_min = RNodeInterface.Q_SNR_MIN_BASE-sfs*RNodeInterface.Q_SNR_STEP q_snr_max = RNodeInterface.Q_SNR_MAX q_snr_span = q_snr_max-q_snr_min quality = round(((snr-q_snr_min)/(q_snr_span))*100,1) if quality > 100.0: quality = 100.0 if quality < 0.0: quality = 0.0 self.r_stat_q = quality except: pass elif (command == KISS.CMD_ST_ALOCK): if (byte == KISS.FESC): escape = True else: if (escape): if (byte == KISS.TFEND): byte = KISS.FEND if (byte == KISS.TFESC): byte = KISS.FESC escape = False command_buffer = command_buffer+bytes([byte]) if (len(command_buffer) == 2): at = command_buffer[0] << 8 | command_buffer[1] self.r_st_alock = at/100.0 RNS.log(f"{self} Radio reporting short-term airtime limit is {self.r_st_alock}%", RNS.LOG_DEBUG) elif (command == KISS.CMD_LT_ALOCK): if (byte == KISS.FESC): escape = True else: if (escape): if (byte == KISS.TFEND): byte = KISS.FEND if (byte == KISS.TFESC): byte = KISS.FESC escape = False command_buffer = command_buffer+bytes([byte]) if (len(command_buffer) == 2): at = command_buffer[0] << 8 | command_buffer[1] self.r_lt_alock = at/100.0 RNS.log(f"{self} Radio reporting long-term airtime limit is {self.r_lt_alock}%", RNS.LOG_DEBUG) elif (command == KISS.CMD_STAT_CHTM): if (byte == KISS.FESC): escape = True else: if (escape): if (byte == KISS.TFEND): byte = KISS.FEND if (byte == KISS.TFESC): byte = KISS.FESC escape = False command_buffer = command_buffer+bytes([byte]) if (len(command_buffer) == 8): ats = command_buffer[0] << 8 | command_buffer[1] atl = command_buffer[2] << 8 | command_buffer[3] cus = command_buffer[4] << 8 | command_buffer[5] cul = command_buffer[6] << 8 | command_buffer[7] self.r_airtime_short = ats/100.0 self.r_airtime_long = atl/100.0 self.r_channel_load_short = cus/100.0 self.r_channel_load_long = cul/100.0 elif (command == KISS.CMD_STAT_PHYPRM): if (byte == KISS.FESC): escape = True else: if (escape): if (byte == KISS.TFEND): byte = KISS.FEND if (byte == KISS.TFESC): byte = KISS.FESC escape = False command_buffer = command_buffer+bytes([byte]) if (len(command_buffer) == 10): lst = (command_buffer[0] << 8 | command_buffer[1])/1000.0 lsr = command_buffer[2] << 8 | command_buffer[3] prs = command_buffer[4] << 8 | command_buffer[5] prt = command_buffer[6] << 8 | command_buffer[7] cst = command_buffer[8] << 8 | command_buffer[9] if lst != self.r_symbol_time_ms or lsr != self.r_symbol_rate or prs != self.r_preamble_symbols or prt != self.r_premable_time_ms or cst != self.r_csma_slot_time_ms: self.r_symbol_time_ms = lst self.r_symbol_rate = lsr self.r_preamble_symbols = prs self.r_premable_time_ms = prt self.r_csma_slot_time_ms = cst RNS.log(f"{self} Radio reporting symbol time is {round(self.r_symbol_time_ms, 2)}ms (at {self.r_symbol_rate} baud)", RNS.LOG_DEBUG) RNS.log(f"{self} Radio reporting preamble is {self.r_preamble_symbols} symbols ({self.r_premable_time_ms}ms)", RNS.LOG_DEBUG) RNS.log(f"{self} Radio reporting CSMA slot time is {self.r_csma_slot_time_ms}ms", RNS.LOG_DEBUG) elif (command == KISS.CMD_STAT_BAT): if (byte == KISS.FESC): escape = True else: if (escape): if (byte == KISS.TFEND): byte = KISS.FEND if (byte == KISS.TFESC): byte = KISS.FESC escape = False command_buffer = command_buffer+bytes([byte]) if (len(command_buffer) == 2): bat_percent = command_buffer[1] if bat_percent > 100: bat_percent = 100 if bat_percent < 0: bat_percent = 0 self.r_battery_state = command_buffer[0] self.r_battery_percent = bat_percent elif (command == KISS.CMD_RANDOM): self.r_random = byte elif (command == KISS.CMD_PLATFORM): self.platform = byte elif (command == KISS.CMD_MCU): self.mcu = byte elif (command == KISS.CMD_ERROR): if (byte == KISS.ERROR_INITRADIO): RNS.log(f"{self} hardware initialisation error (code {RNS.hexrep(byte)})", RNS.LOG_ERROR) raise OSError("Radio initialisation failure") elif (byte == KISS.ERROR_TXFAILED): RNS.log(f"{self} hardware TX error (code {RNS.hexrep(byte)})", RNS.LOG_ERROR) raise OSError("Hardware transmit failure") elif (byte == KISS.ERROR_MEMORY_LOW): RNS.log(f"{self} hardware error (code {RNS.hexrep(byte)}): Memory exhausted", RNS.LOG_ERROR) self.hw_errors.append({"error": KISS.ERROR_MEMORY_LOW, "description": "Memory exhausted on connected device"}) elif (byte == KISS.ERROR_MODEM_TIMEOUT): RNS.log(f"{self} hardware error (code {RNS.hexrep(byte)}): Modem communication timed out", RNS.LOG_ERROR) self.hw_errors.append({"error": KISS.ERROR_MODEM_TIMEOUT, "description": "Modem communication timed out on connected device"}) else: RNS.log(f"{self} hardware error (code {RNS.hexrep(byte)})", RNS.LOG_ERROR) raise OSError("Unknown hardware failure") elif (command == KISS.CMD_RESET): if (byte == 0xF8): if self.platform == KISS.PLATFORM_ESP32: if self.online: RNS.log("Detected reset while device was online, reinitialising device...", RNS.LOG_ERROR) raise OSError("ESP32 reset") elif (command == KISS.CMD_READY): self.process_queue() elif (command == KISS.CMD_DETECT): if byte == KISS.DETECT_RESP: self.detected = True else: self.detected = False else: time_since_last = int(time.time()*1000) - last_read_ms if len(data_buffer) > 0 and time_since_last > self.timeout: RNS.log(f"{self} serial read timeout in command {command}", RNS.LOG_WARNING) data_buffer = b"" in_frame = False command = KISS.CMD_UNKNOWN escape = False if self.id_interval != None and self.id_callsign != None: if self.first_tx != None: if time.time() > self.first_tx + self.id_interval: RNS.log(f"Interface {self} is transmitting beacon data: {self.id_callsign.decode('utf-8')}", RNS.LOG_DEBUG) self.processOutgoing(self.id_callsign) sleep(0.08) except Exception as e: self.online = False RNS.log(f"A serial port error occurred, the contained exception was: {e}", RNS.LOG_ERROR) RNS.log(f"The interface {self} experienced an unrecoverable error and is now offline.", RNS.LOG_ERROR) if RNS.Reticulum.panic_on_interface_error: RNS.panic() RNS.log("Reticulum will attempt to reconnect the interface periodically.", RNS.LOG_ERROR) self.online = False try: self.serial.close() except Exception as e: pass if not self.detached and not self.reconnecting: self.reconnect_port() def reconnect_port(self): self.reconnecting = True while not self.online and not self.detached: try: time.sleep(5) RNS.log(f"Attempting to reconnect serial port {self.port} for {self}...", RNS.LOG_VERBOSE) self.open_port() if self.serial.is_open: self.configure_device() except Exception as e: RNS.log(f"Error while reconnecting port, the contained exception was: {e}", RNS.LOG_ERROR) self.reconnecting = False if self.online: RNS.log(f"Reconnected serial port for {self}") def detach(self): self.detached = True self.disable_external_framebuffer() self.setRadioState(KISS.RADIO_STATE_OFF) self.leave() if self.use_ble: self.ble.close() def should_ingress_limit(self): return False def get_battery_state(self): return self.r_battery_state def get_battery_state_string(self): if self.r_battery_state == RNodeInterface.BATTERY_STATE_CHARGED: return "charged" elif self.r_battery_state == RNodeInterface.BATTERY_STATE_CHARGING: return "charging" elif self.r_battery_state == RNodeInterface.BATTERY_STATE_DISCHARGING: return "discharging" else: return "unknown" def get_battery_percent(self): return self.r_battery_percent def ble_receive(self, data): with self.ble_rx_lock: self.ble_rx_queue += data def ble_waiting(self): return len(self.ble_tx_queue) > 0 def get_ble_waiting(self, n): with self.ble_tx_lock: data = self.ble_tx_queue[:n] self.ble_tx_queue = self.ble_tx_queue[n:] return data def __str__(self): return f"RNodeInterface[{self.name}]" class BLEConnection(): UART_SERVICE_UUID = "6E400001-B5A3-F393-E0A9-E50E24DCCA9E" UART_RX_CHAR_UUID = "6E400002-B5A3-F393-E0A9-E50E24DCCA9E" UART_TX_CHAR_UUID = "6E400003-B5A3-F393-E0A9-E50E24DCCA9E" bleak = None SCAN_TIMEOUT = 2.0 CONNECT_TIMEOUT = 5.0 @property def is_open(self): return self.connected @property def in_waiting(self): buflen = len(self.owner.ble_rx_queue) return buflen > 0 def write(self, data_bytes): with self.owner.ble_tx_lock: self.owner.ble_tx_queue += data_bytes return len(data_bytes) def read(self, n): with self.owner.ble_rx_lock: data = self.owner.ble_rx_queue[:n] self.owner.ble_rx_queue = self.owner.ble_rx_queue[n:] return data def close(self): if self.connected and self.ble_device: RNS.log(f"Disconnecting BLE device from {self.owner}", RNS.LOG_DEBUG) self.must_disconnect = True while self.connect_job_running: time.sleep(0.1) def __init__(self, owner=None, target_name=None, target_bt_addr=None): self.owner = owner self.target_name = target_name self.target_bt_addr = target_bt_addr self.scan_timeout = BLEConnection.SCAN_TIMEOUT self.ble_device = None self.last_client = None self.connected = False self.running = False self.should_run = False self.must_disconnect = False self.connect_job_running = False self.device_disappeared = False import importlib if BLEConnection.bleak == None: if importlib.util.find_spec("bleak") != None: import bleak BLEConnection.bleak = bleak import asyncio BLEConnection.asyncio = asyncio else: RNS.log("Using the RNode interface over BLE requires a the \"bleak\" module to be installed.", RNS.LOG_CRITICAL) RNS.log("You can install one with the command: python3 -m pip install bleak", RNS.LOG_CRITICAL) RNS.panic() self.should_run = True self.connection_thread = threading.Thread(target=self.connection_job, daemon=True).start() def cleanup(self): try: if self.last_client != None: self.asyncio.run(self.last_client.disconnect()) except Exception as e: RNS.log(f"Error while disconnecting BLE device on cleanup for {self.owner}", RNS.LOG_ERROR) self.should_run = False def connection_job(self): while self.should_run: if self.ble_device == None: self.ble_device = self.find_target_device() if type(self.ble_device) == self.bleak.backends.device.BLEDevice: if not self.connected: self.connect_device() time.sleep(1) self.cleanup() self.running = False RNS.log(f"BLE connection job for {self.owner} ended", RNS.LOG_DEBUG) def connect_device(self): if self.ble_device != None and type(self.ble_device) == self.bleak.backends.device.BLEDevice: RNS.log(f"Connecting BLE device {self.ble_device} for {self.owner}...", RNS.LOG_DEBUG) async def connect_job(): self.connect_job_running = True async with self.bleak.BleakClient(self.ble_device, disconnected_callback=self.device_disconnected) as ble_client: def handle_rx(device, data): if self.owner != None: self.owner.ble_receive(data) self.connected = True self.ble_device = ble_client self.last_client = ble_client self.owner.port = str(f"ble://{ble_client.address}") loop = self.asyncio.get_running_loop() uart_service = ble_client.services.get_service(BLEConnection.UART_SERVICE_UUID) rx_characteristic = uart_service.get_characteristic(BLEConnection.UART_RX_CHAR_UUID) await ble_client.start_notify(BLEConnection.UART_TX_CHAR_UUID, handle_rx) while self.connected: if self.owner != None and self.owner.ble_waiting(): outbound_data = self.owner.get_ble_waiting(rx_characteristic.max_write_without_response_size) await ble_client.write_gatt_char(rx_characteristic, outbound_data, response=False) elif self.must_disconnect: await ble_client.disconnect() else: await self.asyncio.sleep(0.1) try: self.asyncio.run(connect_job()) except Exception as e: RNS.log(f"Could not connect BLE device {self.ble_device} for {self.owner}. Possibly missing authentication.", RNS.LOG_ERROR) self.connect_job_running = False def device_disconnected(self, device): RNS.log(f"BLE device for {self.owner} disconnected", RNS.LOG_NOTICE) self.connected = False self.ble_device = None self.device_disappeared = True def find_target_device(self): RNS.log(f"Searching for attachable BLE device for {self.owner}...", RNS.LOG_EXTREME) def device_filter(device: self.bleak.backends.device.BLEDevice, adv: self.bleak.backends.scanner.AdvertisementData): if BLEConnection.UART_SERVICE_UUID.lower() in adv.service_uuids: if self.device_bonded(device): if self.target_bt_addr == None and self.target_name == None: if device.name.startswith("RNode "): return True if self.target_bt_addr == None or (device.address != None and device.address == self.target_bt_addr): if self.target_name == None or (device.name != None and device.name == self.target_name): return True else: if self.target_bt_addr != None and device.address == self.target_bt_addr: RNS.log(f"Can't connect to target device {self.target_bt_addr} over BLE, device is not bonded", RNS.LOG_ERROR) elif self.target_name != None and device.name == self.target_name: RNS.log(f"Can't connect to target device {self.target_name} over BLE, device is not bonded", RNS.LOG_ERROR) return False device = None try: device = self.asyncio.run(self.bleak.BleakScanner.find_device_by_filter(device_filter, timeout=self.scan_timeout)) except Exception as e: RNS.log(f"Error while finding BLE device for {self.owner}: {e}", RNS.LOG_ERROR) self.should_run = False return device def device_bonded(self, device): try: if hasattr(device, "details"): if "props" in device.details and "Bonded" in device.details["props"]: if device.details["props"]["Bonded"] == True: return True except Exception as e: RNS.log(f"Error while determining device bond status for {device}, the contained exception was: {e}", RNS.LOG_ERROR) return False