39 lines
959 B
Python
39 lines
959 B
Python
import matplotlib.pyplot as plt
|
|
import matplotlib.cbook as cbook
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
|
|
f1 = open('const_m_timings.csv', 'r')
|
|
f2 = open('../11/const_m_timings.csv', 'r')
|
|
x1 = []
|
|
y1 = []
|
|
for l,p in zip(f1.readlines(), f2.readlines()):
|
|
l = l.split(',')
|
|
p = p.split(',')
|
|
x1.append(p[0])
|
|
y1.append(float(p[1])/float(l[1]))
|
|
|
|
f1 = open('const_Nm_timings.csv', 'r')
|
|
f2 = open('../11/const_Nm_timings.csv', 'r')
|
|
x2 = []
|
|
y2 = []
|
|
for l,p in zip(f1.readlines(), f2.readlines()):
|
|
l = l.split(',')
|
|
p = p.split(',')
|
|
x2.append(p[0])
|
|
y2.append(float(p[1])/float(l[1]))
|
|
|
|
plt.plot(x1, y1, label = 'constant m')
|
|
plt.plot(x2, y2, label = 'constant Nm')
|
|
for i in range(len(x1)):
|
|
plt.text(i,y1[i],f'{y1[i]:.2f}', color="blue")
|
|
for i in range(len(x2)):
|
|
plt.text(i,y2[i],f'{y2[i]:.2f}', color="orange")
|
|
plt.title('Speedup after optimization')
|
|
plt.xlabel('N')
|
|
plt.ylabel('xspeedup')
|
|
plt.grid()
|
|
plt.legend()
|
|
plt.show()
|