#ifndef DOUBLY_LINKED_LIST_H #define DOUBLY_LINKED_LIST_H #include #include "sequence.h" namespace seq { class DoublyLinkedListNode { public: // return a reference to the stored item int& get_item() { return this->item; } // return pointer to next node, or nullptr if this is the final node DoublyLinkedListNode* get_next() const { return this->next; } // return pointer to previous node, or nullptr if this is the initial node DoublyLinkedListNode* get_prev() const { return this->prev; } // overwrite the item stored in this node void set_item(int in_item) { this->item = in_item; } private: int item = 0; DoublyLinkedListNode* next = nullptr; DoublyLinkedListNode* prev = nullptr; // attach a node behind this node // if there was a node attached to this previously, it is NOT deleted! void set_next(DoublyLinkedListNode* in_next) { this->next = in_next; } // attach a node before this node // if there was a node attached to this previously, it is NOT deleted! void set_prev(DoublyLinkedListNode* in_prev) { this->prev = in_prev; } friend class DoublyLinkedList; // allow DoublyLinkedList to access private members }; class DoublyLinkedList: public Sequence { public: bool empty() const { return (this->head == nullptr); } // test whether the doubly linked list is empty size_t size() const; // return the size (number of items in the doubly linked list) // it is the caller's responsibility to ensure that the list is not empty when calling front() or back()! int& front() { assert(this->head); return this->head->get_item(); } // return a reference to the first item int& back() { assert(this->tail); return this->tail->get_item(); } // return a reference to the final item // return a reference to the item at position i of the list, counting from 0 // for negative numbers, count from the tail (-1) backward (-2, -3, ...) // it is the caller's responsibility that the index is within range int& at(int i) { return this->index(i)->get_item(); } // return pointer to the head/tail node DoublyLinkedListNode* begin() const { return this->head; } DoublyLinkedListNode* end() const { return this->tail; } // return pointer to the node at position i, counting from 0 // for negative numbers, count from the tail (-1) backward (-2, -3, ...) DoublyLinkedListNode* index(int i) const; /* * accepts an additional item into the doubly linked list; * by default, this is done at the back end of the list * call push_front(...) to push an element at the front * * the list takes ownership of the copy (but not of the original!) */ void push(const int& pushed_item) { this->push_back(pushed_item); } void push_back(const int& pushed_item); void push_front(const int& pushed_item); /* * removes an item from the list (front end by default) * to do the same at the back, call pop_back() */ void pop() { this->pop_front(); } void pop_front(); void pop_back(); void clear() { while(!this->empty()) this->pop(); } // remove all the items from the list // it is the caller's responsibility that the index is within range // for negative numbers, count from the tail (-1) backward (-2, -3, ...) void insert_at(int i, const int& inserted_item); // insert an item at index i void erase_at(int i); // remove the item at index i // it is the caller's responsibility that the node is actually part of the list void insert_successor_to(DoublyLinkedListNode* predecessor, const int& inserted_item); // insert an item after given node void erase_successor_to(DoublyLinkedListNode* predecessor) // remove the item after given node { this->erase_node(predecessor->get_next()); } void erase_node(DoublyLinkedListNode* erased_node); ~DoublyLinkedList() { this->clear(); } private: DoublyLinkedListNode* head = nullptr; DoublyLinkedListNode* tail = nullptr; }; } #endif